www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Messbarkeit
Messbarkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Messbarkeit: Ansatz
Status: (Frage) beantwortet Status 
Datum: 01:28 Mi 16.03.2011
Autor: bedburger84

Aufgabe
[Dateianhang nicht öffentlich]


Mir fehlt hier völlig ein Ansatz. Ich weiß, dass stetige Funktionen zum Beipspiel messbar sind, diese Funktion ist jedoch nicht stetig.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:48 Mi 16.03.2011
Autor: fred97

Ich nehme an [mm] \IR' [/mm] ist = [mm] $\IR \cup \{\infty, - \infty\}$. [/mm] Wenn das so ist, so ist

              $ [mm] 1_{(- \infty,0]}$ [/mm]  messbar (warum ?).

Was weißt Du über Produkte und Summen messbarer Funktionen ?

FRED

Edit: ich glaube eher, dass [mm] $\IR'=\IR^1= \IR$ [/mm] ist. Stimmts ?

Bezug
                
Bezug
Messbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:12 Mi 16.03.2011
Autor: bedburger84

Dass diese auch wieder messbar sind. Das reicht also als Begründung. Dass die Funktion als Summe messbarer Größen wieder messbar ist?

Bezug
                        
Bezug
Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:14 Mi 16.03.2011
Autor: fred97


> Dass diese auch wieder messbar sind. Das reicht also als
> Begründung. Dass die Funktion als Summe messbarer Größen
> wieder messbar ist?

Mir würde das reichen.

FRED


Bezug
                                
Bezug
Messbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:20 Mi 16.03.2011
Autor: bedburger84

Und wie zeige ich dann, dass |x| messbar ist? Oder [mm] 2^x*1_{(\infty,0)}(x)? [/mm]

Bezug
                                        
Bezug
Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 Mi 16.03.2011
Autor: fred97


> Und wie zeige ich dann, dass |x| messbar ist?

|x| ist stetig


> Oder
> [mm]2^x*1_{(\infty,0)}(x)?[/mm]  


[mm] 2^x [/mm] ist stetig.

[mm] 1_{(-\infty,0)} [/mm]  ist messbar, weil (- [mm] \infty,0) [/mm]  messbar ist.


FRED


Bezug
                                                
Bezug
Messbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:23 Mi 16.03.2011
Autor: bedburger84

*Schleier vor den Augen verschwindet*

Danke schön!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de