www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Messbarkeit / Integrierbarkeit
Messbarkeit / Integrierbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Messbarkeit / Integrierbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:08 Di 16.11.2004
Autor: Micha

Hallo!
Ich soll Folgendes zeigen:
Sei $ A [mm] \subset \IR^n$ [/mm] eine $µ_n$-messbare und beschränkte Menge.

a) Zeigen Sie, dass A $µ_n$-integrierbar ist und dass die Koordinatenfunktionen
[mm] x_j : \IR^n \to \IR , (x_1, ... x_n) \hookrightarrow x_j[/mm] für alle $j [mm] \in \{1, ..., n\}$ [/mm] über A $µ_n$-integrierbar sind.

Falls $µ_n (A) > 0 $ ist, nennt man

[mm] (\overline{x_1}, ... , \overline{x_n}) [/mm] mit
[mm] \overline{x_j} := \frac{1}{µ_n(A)} \integral_A x_j dµ_n[/mm] den Schwerpunkt von A.

b) Bestimmen Sie den Schwerpunkt eines Kegels mit Radius r und der Höhe h.



Also zu a):
Um zu zeigen, dass A $µ_n$-integrierbar ist, muss ich doch sicher einen der zwei großen Konvergenz-Sätze (monotone Konvergenz, dominierte Konvergenz) anwenden, oder? Kann man hier nicht so argumentieren:

Aus der Beschränktheit folgt doch, dass $M:= [mm] \sup A_i -\inf A_i [/mm] < [mm] \infty$ [/mm] ist für jedes [mm] i \in \{1, ..., n\}[/mm].
Hmm jetzt müsste man zeigen, dass deshalb die Koordinatenfunktionen integrierbar sind. Dann folgt fast inmittelbar, dass auch A integrierbar ist, oder?

zu b)
Ich habe mir hier eine Skizze gemacht und habe den Kegel so gelegt, dass ich die Höhe in z-Richtung abtrage und in der x-y-Ebene einen Kreis vom Radius r erhalte. Für diesen Kreis habe ich (vermutlich) auch schon das Integral nach Fubini berechnet (unter Voraussetzung von Teil a) , dass der Kegel überhaupt integrierbar ist, beschränkt ist er ja.) Da erhalte ich:

[mm] \integral_{-\sqrt{r^2 - x^2}}^{\sqrt{r^2 - x^2}} \, \integral_{-r}^r 1 \, dx \, dy [/mm]

Stimmt das soweit? Wie sehen jetzt die grenzen für das äußere Integral nach z aus?


Wäre schön, wenn mir hier jemand helfen könnte.

Gruß Micha

        
Bezug
Messbarkeit / Integrierbarkeit: zur a)
Status: (Antwort) fertig Status 
Datum: 19:01 Mi 17.11.2004
Autor: Stefan

Lieber Micha!

Da $A$ beschränkt ist, liegt $A$ in einem hinreichend großen Quader

$Q = [mm] \prod\limits_{i=1}^n [a_i,b_i)$. [/mm]

Da man das Lebesgue-Maß von $Q$ ja kennt, kann man daraus und mit Hilfe der Monotonie des Integrals das Integral über [mm] $1_A$ [/mm]  abschätzen.

Weiterhin gilt:

[mm] $\int\limits_A \vert \underbrace{x_j}_{ \le \max\{|a_j|,|b_j|\} }\vert \, d\mu_n \le \max\{|a_j|,|b_j|\} \cdot \mu(A)$. [/mm]

Die b) ist mir jetzt zu geometrisch, das soll mal schön jemand anderes machen... ;-)

Liebe Grüße
Stefan

Bezug
        
Bezug
Messbarkeit / Integrierbarkeit: Kegel
Status: (Antwort) fertig Status 
Datum: 12:25 Fr 19.11.2004
Autor: Hugo_Sanchez-Vicario

Hallo Hathorman,

hier die Antwort zu deinem Kegelproblem.

Prinzipiell ist es hier günstiger, in Polarkoordinaten zu arbeiten, aber ich versuche es mit kartesischen.

Deine Intergrationsgrenzen sind: [mm]x\in[-r;r],\ y\in[-r;r],\ z\in[0;h][/mm] wobei natürlich nicht das ganze Gebiet vom Kegel ausgefüllt wird.

Also legst du dir erst eine Integrationsreihenfolge fest. Zuletzt kommt IMMER die Variable, mit der du die anderen am einfachsten beschreiben kannst. D.h. wenn du einen symmetrischen Körper hast, dann integriest du zuletzt entlang der Symmetrieachse.

Ich lege jetzt die Spitze in den Ursprung. Du hast das bestimmt anders herum gemacht, aber die Grenzen für x und y sehen einfach schicker aus, wenn du Ursprungsgeraden in deinem Kegelmantel hast.

Dann gilt für (x,y,z): [mm]\frac{\sqrt{x^2+y^2}}{r}\le\frac{z}{h}[/mm] (Strahlensatz)

Das bedeutet: [mm]x^2\le\frac{r^2}{h^2}\cdot z^2-y^2[/mm].

Weiterhin gilt: [mm]|\frac{y}{r}|\le\frac{z}{h}[/mm] und damit [mm]|y|\le\frac{r}{h}\cdot z[/mm]

Dein Integral lautet also:
[mm]V_{Kegel}=\int_{0}^{h}( \int_{-\frac{r}{h}z}^{+\frac{r}{h}z}( \int_{-\sqrt{\frac{r^2}{h^2}z^2-y^2}}^{+\sqrt{\frac{r^2}{h^2}z^2-y^2}}1\ dx)dy)dz[/mm]

Das führt dich Maple zufolge tatsächlich auf [mm]\frac{\pi r^2h}{3}[/mm].

Dein Schwerpunkt liegt aus Symmetriegründen bei [mm] (0,0,S_Z) [/mm] mit
[mm]S_Z=\frac{\int z\ dV}{V_{Kegel}}[/mm]

Also bestimmst du jetzt auch noch
[mm]\int_{0}^{h}(\int_{-\frac{r}{h}z}^{+\frac{r}{h}z}(\int_{-\sqrt{\frac{r^2}{h^2}z^2-y^2}}^{+\sqrt{\frac{r^2}{h^2}z^2-y^2}}z dx)dy)dz[/mm]

Das Ergebnis davon ist [mm]\frac{r^2h^2\pi}{4}[/mm], was auf
[mm]S_Z=\frac{3}{4}h[/mm] führt.

Der SP liegt also 0,25 h über der Grundfläche. Beim Tetraeder ist das übrigens genauso.

Hugo

PS: In Polarkoordinaten geht es leichter, weil du dir eine Integration sparst und die Grenzen leichter dargestellt sind.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de