www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Mindestens-Aufgabe
Mindestens-Aufgabe < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mindestens-Aufgabe: Interpretation am Urnenmodell
Status: (Frage) beantwortet Status 
Datum: 10:54 Mi 03.06.2015
Autor: Matheverlierer

Aufgabe
Aufgabe mit Drei-Mindestens
5% aller Fahrgäste der Linie U9 in Berlin sind Schwarzfahrer. Wie
viele Fahrgäste muss ein BVG-Kontrolleur (mindestens) prüfen,
damit er mit mindestens 90%-iger Wahrscheinlichkeit auf
(mindestens) einen Schwarzfahrer trifft?

Hallo zusammen,
ich habe mir folgendes Script durchgelesen: http://userpage.fu-berlin.de/decarmen/index_sto_Material.htm -->  3-mindestens-Aufgabe Münzwurf
Danach kommen die Übungsaufgaben (eine davon siehe oben).

Da ich mich etwas schwer tue, wollte ich zunächst die Aufgabe als Urnenmodell interpretieren und dann einen Baum zeichnen.
Ich hätte das Urnenmodell so interpretiert: z.B. 100 Kugeln mit 5 schwarzen (schwarzfahrer) und 95 weiße Kugeln. Ziehen ohne Zurücklegen (da ich als Kontrolleur ja das Gesicht des Passagiers kenne und erkenne, dass ich ihn bereits kontrolliert habe).
Mit Ziehen ohne zurücklegen funktioniert allerdings dann die Erklärung auf dem AB nicht mehr...
Denn die Lösung des ABs geht von Ziehen MIT zurücklegen aus.

Beispiel am Urnenmodell: Ich ziehe 3 Personen heraus
A: Mindestens ein Schwarzfahrer
[mm] \overline{A}: [/mm] Kein einziger Schwarzfahrer
[mm] P(\overline{A}) [/mm] =   1- [mm] $95\over{100}$\cdot {94\over 99} \cdot {93\over 98}=14,4\% [/mm]
D.h. wenn man bei einer Kontrolle von 100 Personen 3 Personen kontrolliert, hat man mit 14,4% Wahrscheinlichkeit mindestens einen Schwarzfahrer dabei.

Wenn ich das nun mit der Lösungsvariante vom AB mache (wobei ich anstelle 90% diese 14,4% nehme)
1-P("keinen Schwarzfahrer")>= 0,144
1- [mm] \left(95 \over 100\right)^n [/mm] >=0,144
0,856>= [mm] \left(95 \over 100\right)^n [/mm]     |ln(...)
ln(0,856)>=n [mm] ln\left(95 \over 100\right) [/mm]
n >=3.03
Der Schaffner muss mindestens 3.03 Personen kontrollieren, um mindestens einen Schwarzfahrer zu ertappen.

Bei der geringen Anzahl von Personen ist es noch annähernd korrekt. Allerdings stimmt es bei n=45 nicht mehr.
Beim Urnenmodell mit zurücklegen:
wenn man bei einer Kontrolle von 100 Personen 45 Personen kontrolliert, hat man mit 95,38% Wahrscheinlichkeit mindestens einen Schwarzfahrer dabei.
Bei der anderen Variante hat man bei einer Kontrolle von 45Personen eine Wahrscheinlichkeit von 90%.

Ich weiß, dass mein Denkfehler beim Urnenmodell OHNE zurücklegen liegt. Aber wieso?


        
Bezug
Mindestens-Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 Mi 03.06.2015
Autor: M.Rex

Hallo

> Aufgabe mit Drei-Mindestens
> 5% aller Fahrgäste der Linie U9 in Berlin sind
> Schwarzfahrer. Wie
> viele Fahrgäste muss ein BVG-Kontrolleur (mindestens)
> prüfen,
> damit er mit mindestens 90%-iger Wahrscheinlichkeit auf
> (mindestens) einen Schwarzfahrer trifft?
> Hallo zusammen,
> ich habe mir folgendes Script durchgelesen:
> http://userpage.fu-berlin.de/decarmen/index_sto_Material.htm
> --> 3-mindestens-Aufgabe Münzwurf
> Danach kommen die Übungsaufgaben (eine davon siehe
> oben).

>

> Da ich mich etwas schwer tue, wollte ich zunächst die
> Aufgabe als Urnenmodell interpretieren und dann einen Baum
> zeichnen.
> Ich hätte das Urnenmodell so interpretiert: z.B. 100
> Kugeln mit 5 schwarzen (schwarzfahrer) und 95 weiße
> Kugeln. Ziehen ohne Zurücklegen (da ich als Kontrolleur ja
> das Gesicht des Passagiers kenne und erkenne, dass ich ihn
> bereits kontrolliert habe).
> Mit Ziehen ohne zurücklegen funktioniert allerdings dann
> die Erklärung auf dem AB nicht mehr...
> Denn die Lösung des ABs geht von Ziehen MIT zurücklegen
> aus.

Das ist auch korrekt, denn dem einzelnen Schwarzfahrer ist es herzlich egal, ob andere Schwarzfahrer in der Bahn sind. Die Wahrscheinlichkeit, dass eine Person schwarz fährt, ist also unabhängig davon, ob vorher schon andere Kontrollen stattgefunden haben.

>

> Beispiel am Urnenmodell: Ich ziehe 3 Personen heraus
> A: Mindestens ein Schwarzfahrer
> [mm]\overline{A}:[/mm] Kein einziger Schwarzfahrer
> [mm]P(\overline{A})[/mm] = 1- [mm]95\over{100}[/mm][mm] \cdot {94\over 99} \cdot {93\over 98}=14,4\%[/mm]

>

> D.h. wenn man bei einer Kontrolle von 100 Personen 3
> Personen kontrolliert, hat man mit 14,4% Wahrscheinlichkeit
> mindestens einen Schwarzfahrer dabei.

>

> Wenn ich das nun mit der Lösungsvariante vom AB mache
> (wobei ich anstelle 90% diese 14,4% nehme)
> 1-P("keinen Schwarzfahrer")>= 0,144
> 1- [mm]\left(95 \over 100\right)^n[/mm] >=0,144
> 0,856>= [mm]\left(95 \over 100\right)^n[/mm] |ln(...)
> ln(0,856)>=n [mm]ln\left(95 \over 100\right)[/mm]
> n >=3.03
> Der Schaffner muss mindestens 3.03 Personen kontrollieren,
> um mindestens einen Schwarzfahrer zu ertappen.


Dann solltest du doch auf ganze Zahlen "aufstocken", also hier auf [mm] n\ge4 [/mm]

>

> Bei der geringen Anzahl von Personen ist es noch annähernd
> korrekt. Allerdings stimmt es bei n=45 nicht mehr.
> Beim Urnenmodell mit zurücklegen:
> wenn man bei einer Kontrolle von 100 Personen 45 Personen
> kontrolliert, hat man mit 95,38% Wahrscheinlichkeit
> mindestens einen Schwarzfahrer dabei.
> Bei der anderen Variante hat man bei einer Kontrolle von
> 45Personen eine Wahrscheinlichkeit von 90%.

>

> Ich weiß, dass mein Denkfehler beim Urnenmodell OHNE
> zurücklegen liegt. Aber wieso?

Dazu siehe die Passage oben.

Du hast die Ungleichung [mm] 1-\left(1-0,05\right)^{n}\le0,9 [/mm] zu lösen, das führt zu [mm] n\ge45 [/mm] Kontrollen.

Denn
[mm] 1-\left(1-0,05\right)^{n}\le0,9 [/mm]
[mm] \Leftrightarrow-0,95^{n}\le-0,1 [/mm]
[mm] \Leftrightarrow0,95^{n}\ge0,1 [/mm]
[mm] \Leftrightarrow n\ge\log_{0,95}(0,1) [/mm]

Also [mm] n\ge44,89 [/mm] und das bedeutet, dass du auf mindestens 45 Kontrollen aufstocken musst.

Marius

Bezug
                
Bezug
Mindestens-Aufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Mi 03.06.2015
Autor: Matheverlierer

In meinem Mathebuch habe ich folgendes gefunden - deswegen bin ich auch so verwirrt:
Zufallsexperiment:
Von 30 Monitoren einer Sendung sind 3 defekt. Zwei Monitore dieser Sendung werden entnommen. Mit welcher Wahrscheinlichkeit sind beide Monitore defekt?
Urnenmodell:
Urne mit 30 Kugeln, 27 weiße und 3 schwarze Kugeln. Zweimal ziehen ohne zurücklegen. Gesuchte Wahrscheinlichkeit: 0.0069

Dieses Beispiel habe ich auf die Schwarzfahrer übertragen - warum war das falsch?

Bezug
                        
Bezug
Mindestens-Aufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Mi 03.06.2015
Autor: M.Rex

Hallo

> In meinem Mathebuch habe ich folgendes gefunden - deswegen
> bin ich auch so verwirrt:
> Zufallsexperiment:
> Von 30 Monitoren einer Sendung sind 3 defekt. Zwei
> Monitore dieser Sendung werden entnommen. Mit welcher
> Wahrscheinlichkeit sind beide Monitore defekt?
> Urnenmodell:
> Urne mit 30 Kugeln, 27 weiße und 3 schwarze Kugeln.
> Zweimal ziehen ohne zurücklegen. Gesuchte
> Wahrscheinlichkeit: 0.0069


Hier sind drei der 30 Monitore defekt, das bedeutet, es sind in der Tat eben diese drei Defekten Monitore in der Sendung.

>

> Dieses Beispiel habe ich auf die Schwarzfahrer übertragen
> - warum war das falsch?

Weil die Schwarzfahrer unanbängig voneinander schwarzfahren.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de