www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Minima und Maxima bestimmen
Minima und Maxima bestimmen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minima und Maxima bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Sa 22.06.2013
Autor: Apfelchips

Aufgabe
Bestimmen Sie für die Funktion $f : [mm] \IR^2 \to \IR$, [/mm] welche durch
$f(x,y) := [mm] (x^2+2y^2) \cdot e^{-(x^2+y^2)}$ [/mm]
gegeben ist, alle lokalen Minimum- und Maximumstellen und die dazugehörigen lokalen Extrema. handelt es sich hierbei um isolierte oder nicht isolierte Extremstellen?

Hallo zusammen,

ich habe bereits alle partiellen Ableitungen berechnet, den Gradienten aufgestellt und diesen gleich null gesetzt um die "Kandidaten" für die Extremstellen zu finden:

[mm] $P_1(0,\pm1), P_2(\pm1,0), P_3(0,0)$ [/mm]

Nun habe ich die Hesse-Matrix aufgestellt …

[mm] $H_f(x,y) [/mm] = [mm] \pmat{ f_{xx} & f_{xy} \\ f_{yx} & f_{yy} }$ [/mm]

… und diese an den jeweiligen Punkten berechnet um herauszufinden, ob es sich um ein lokales Maximum (= Hesse-Matrix ist negativ definit, also alle Eigenwerte negativ) oder um ein lokales Minimum (= Hesse-Matrix ist positiv definit, also alle Eigenwerte positiv) handelt:

[mm] $H_f(0,1) [/mm] = [mm] H_f(0,-1) [/mm] = [mm] \pmat{ -\frac{2}{e} & 0 \\ 0 & -\frac{8}{e} }$ [/mm]

[mm] $H_f(1,0) [/mm] = [mm] H_f(-1,0) [/mm] = [mm] \pmat{ -\frac{4}{e} & 0 \\ 0 & \frac{2}{e} }$ [/mm]

[mm] $H_f(0,0) [/mm] = [mm] \pmat{ 2 & 0 \\ 0 & 4 }$ [/mm]

Also:
[mm] $P_1(0,\pm1)$ [/mm] ist ein lokales Maximum
[mm] $P_3(0,0)$ [/mm] ist ein lokales Minimum
[mm] $P_2(\pm1,0)$ [/mm] ist ein Sattelpunkt

Das sind also "alle lokalen Minimum- und Maximumstellen". Was ist nun (in der Aufgabenstellung) mit "und die dazugehörigen lokalen Extrema" gemeint? Ein Minimum/Maximum ist doch ein Extremum bzw. Extrema ist doch der Oberbegriff für Minima und Maxima.

Auch auf die Frage nach den isolierten oder nicht isolierten Extremstellen habe ich leider keine Antwort. Kann ich die Hesse-Matrix verwenden, um das herauszufinden?

Viele Grüße
Patrick

        
Bezug
Minima und Maxima bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:33 Sa 22.06.2013
Autor: angela.h.b.


> Bestimmen Sie für die Funktion [mm]f : \IR^2 \to \IR[/mm], welche
> durch
> [mm]f(x,y) := (x^2+2y^2) \cdot e^{-(x^2+y^2)}[/mm]
> gegeben ist,
> alle lokalen Minimum- und Maximumstellen und die
> dazugehörigen lokalen Extrema. handelt es sich hierbei um
> isolierte oder nicht isolierte Extremstellen?
> Hallo zusammen,

>

> ich habe bereits alle partiellen Ableitungen berechnet, den
> Gradienten aufgestellt und diesen gleich null gesetzt um
> die "Kandidaten" für die Extremstellen zu finden:

>

> [mm]P_1(0,\pm1), P_2(\pm1,0), P_3(0,0)[/mm]

>

> Nun habe ich die Hesse-Matrix aufgestellt …

>

> [mm]H_f(x,y) = \pmat{ f_{xx} & f_{xy} \\ f_{yx} & f_{yy} }[/mm]

>

> … und diese an den jeweiligen Punkten berechnet um
> herauszufinden, ob es sich um ein lokales Maximum (=
> Hesse-Matrix ist negativ definit, also alle Eigenwerte
> negativ) oder um ein lokales Minimum (= Hesse-Matrix ist
> positiv definit, also alle Eigenwerte positiv) handelt:

>

> [mm]H_f(0,1) = H_f(0,-1) = \pmat{ -\frac{2}{e} & 0 \\ 0 & -\frac{8}{e} }[/mm]

>

> [mm]H_f(1,0) = H_f(-1,0) = \pmat{ -\frac{4}{e} & 0 \\ 0 & \frac{2}{e} }[/mm]

>

> [mm]H_f(0,0) = \pmat{ 2 & 0 \\ 0 & 4 }[/mm]

>

> Also:
> [mm]P_1(0%2C%5Cpm1)[/mm] ist ein lokales Maximum
> [mm]P_3(0,0)[/mm] ist ein lokales Minimum
> [mm]P_2(\pm1,0)[/mm] ist ein Sattelpunkt

>

> Das sind also "alle lokalen Minimum- und Maximumstellen".

Hallo,

stimmt.

> Was ist nun (in der Aufgabenstellung) mit "und die
> dazugehörigen lokalen Extrema" gemeint?

Du sollst den zugehörigen Funktionswert mit angeben.
Wie bei Funktionen einer Veränderlichen:
[mm] f(x):=x^2+2 [/mm] hat ein Minimum an der Stelle x=0, der Tiefpunkt ist T(0|2).

Es gibt hier also ein lokales Maximum an der Stelle (0,1), das zugehörige Maximum ist (0,1,2/e).

> Auch auf die Frage nach den isolierten oder nicht
> isolierten Extremstellen habe ich leider keine Antwort.
> Kann ich die Hesse-Matrix verwenden, um das
> herauszufinden?

Ja. Wenn die Matrix pos. definit ist, hast Du ein isoliertes Minimum, Max. analog.

Ein isoliertes Minimum ist eins, bei dem Du eine Umgebung findest, in welcher alle Funktionswerte echt größer als die des betrachteten Minimums sind.

LG Angela
>

> Viele Grüße
> Patrick


Bezug
                
Bezug
Minima und Maxima bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:56 Sa 22.06.2013
Autor: Apfelchips

Hallo Angela,

> > Was ist nun (in der Aufgabenstellung) mit "und die
>  > dazugehörigen lokalen Extrema" gemeint?

>  
> Du sollst den zugehörigen Funktionswert mit angeben.
>  Wie bei Funktionen einer Veränderlichen:
>  [mm]f(x):=x^2+2[/mm] hat ein Minimum an der Stelle x=0, der
> Tiefpunkt ist T(0|2).
>  
> Es gibt hier also ein lokales Maximum an der Stelle (0,1),
> das zugehörige Maximum ist (0,1,2/e).

ich verstehe. Das zugehörige Minimum zur Minimumstelle $(0,0)$ ist dann also einfach $(0,0,0)$.

>  
> > Auch auf die Frage nach den isolierten oder nicht
>  > isolierten Extremstellen habe ich leider keine Antwort.

>  > Kann ich die Hesse-Matrix verwenden, um das

>  > herauszufinden?

>  
> Ja. Wenn die Matrix pos. definit ist, hast Du ein
> isoliertes Minimum, Max. analog.
>  
> Ein isoliertes Minimum ist eins, bei dem Du eine Umgebung
> findest, in welcher alle Funktionswerte echt größer als
> die des betrachteten Minimums sind.

Das ist praktisch, denn so muss ich ja gar nicht mehr weiterrechnen.
In diesem Fall sind also alle gefundenen Extremstellen isoliert.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de