www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Minimalpolynom
Minimalpolynom < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Idee
Status: (Frage) beantwortet Status 
Datum: 14:01 Di 11.04.2006
Autor: steffenhst

Aufgabe
Sei K ein Körper und sei f: [mm] K^{n} [/mm] --> [mm] K^{n} [/mm] ein Endomorphismus. Sei p ein Polynom in K [T]. Beweisen Sie: Wenn x ein Eigenwert von f ist, dann ist p(x) ein Eigenwert von p(f).  

Habe diese Frage in keinem anderen Interforum gestellt.

Hallo,

ehrlich gesagt weiß ich bei dieser Aufgabe nicht recht weiter. Wenn ich f in p einsetze, dann kriege ich ein Polynom der Form [mm] \summe_{i=0}^{n} a_{i}*f^{i}. [/mm] Für x [mm] \summe_{i=0}^{n} b_{i}*x^{i}. [/mm]

Allgemein gilt für einen Eigenwert und f doch: f(x) = x*v (dabei ist v der Eigenvektor).

Wenn ich jetzt p(f) (p(x)) bilde, dann komme ich auf

p(f) [mm] (\summe_{i=0}^{n} b_{i}*x^{i}) [/mm] = [mm] \summe_{i=0}^{n} b_{i}*x^{i} [/mm] * w (der Eigenvektor von p(f) zu p(x), oder? Aber wie jetzt weiter?


Vielleicht habt ihr einen Vorschlag.

Grüße Steffen

        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Di 11.04.2006
Autor: SEcki


> ehrlich gesagt weiß ich bei dieser Aufgabe nicht recht
> weiter. Wenn ich f in p einsetze, dann kriege ich ein
> Polynom der Form [mm]\summe_{i=0}^{n} a_{i}*f^{i}.[/mm] Für x
> [mm]\summe_{i=0}^{n} b_{i}*x^{i}.[/mm]

Was meinst du mit x? Das soll doch ein EW sein, oder?

> Allgemein gilt für einen Eigenwert und f doch: f(x) = x*v
> (dabei ist v der Eigenvektor).

Eher [m]f(v)=x*v[/m]

> Wenn ich jetzt p(f) (p(x)) bilde, dann komme ich auf

Unfug, das soll der EW sein, nicht der EV - setz mal den EV v ein.

SEcki

Bezug
                
Bezug
Minimalpolynom: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:56 Mi 12.04.2006
Autor: steffenhst

Hallo Secki,

sorry hatte mich in den Definitionen verguckt. Also x war tatsächlich der Eigenwert. Wenn ich jetzt p(f) (v) (mit v als Eigenvektor zu x) bilde dann bekomme ich doch

p(f) (v) = [mm] (\summe_{i=0}^{n} a_{i} x^{i}) [/mm] v. Aber wie kann ich jetzt schlussfolgern, dass p(x) der EW zu p(f) ist.

Mann kann das ja auch über Matrizen machen. Also sei A die Matrixdarstellung von f, x wieder der Eigenwert und v der Eigenvektor zu x. Mit Def. gilt doch dann

Av = xv. Das muss doch dann auch für p(A) und p(x) gelten. Also

p(A)v = p(x)v oder

[mm] (\summe_{i=0}^{n} a_{i} A^{i})v [/mm] = [mm] (\summe_{i=0}^{n} a_{i} x^{i}) [/mm] v

Das kann ich ja dann umformen zu:

x [mm] (\summe_{i=0}^{n} a_{i} [/mm] * [mm] (A^{i} [/mm] - [mm] x^{i}) [/mm] = 0

Aber irgendwie komme ich da auch nicht weiter. An sich wird der Eigenwert  ja nur vervielfacht und der Ev bleibt konstant.

Vielleicht kannst du mir ja noch einmal einen Tip geben.

Grüße Steffen





Bezug
                        
Bezug
Minimalpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:00 Mi 12.04.2006
Autor: steffenhst

Hallo,

mir ist gerade aufgefallen, dass die Überschrift ("Minimalpolynom") vollkommener Blödsinn ist. Das Polynom in der Aufgabenstellung kann ein beliebiges Polynom sein.

Grüße Steffen

Bezug
                        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Mi 12.04.2006
Autor: SEcki


> p(f) (v) = [mm](\summe_{i=0}^{n} a_{i} x^{i})[/mm] v. Aber wie kann
> ich jetzt schlussfolgern, dass p(x) der EW zu p(f) ist.

Äh, schau dir doch bitte mal die Definition von EW an ... (die begründung steht im wesentlichen schon da!)

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de