www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Minimalpolynom
Minimalpolynom < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:12 Sa 15.05.2010
Autor: Dr.Prof.Niemand

Hi,
ich versuche gerade zu zeigen, ob jedes normierte Polynom im Polynomring K[t] das Minimalpolynom einer Matrix ist.
Eigentlich ist klar, dass die Aussage richtig ist. Lt. Definition ist das Minimalpolynom eines Elementes x [mm] \in [/mm] A das normierte Polynom kleinsten Grades mit der Eigenschaft, dass x Nullstelle ist.
Also wird sich zu jedem normierten Polynom eine Matrix finden, sodass die oben genannte Eigenschaft erfüllt wird.
Ich weiß aber leider nicht wie man das beweisen kann...

LG
Prof

        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 Sa 15.05.2010
Autor: SEcki


>  Eigentlich ist klar, dass die Aussage richtig ist.

Warum?

> Lt. Definition ist das Minimalpolynom eines Elementes x [mm]\in[/mm] A das normierte Polynom kleinsten Grades mit der Eigenschaft, dass x Nullstelle ist.

Und wieso sollte die Umkehrung gelten?

>  Also wird sich zu jedem normierten Polynom eine Matrix finden, sodass die oben genannte Eigenschaft erfüllt wird.

Aha. Warum?

>  Ich weiß aber leider nicht wie man das beweisen kann...

Ich weiß gar nicht, ob das stimmt. Jedoch würde ich so vorgehen: ich zeige dies für algebraisch abgeschlossene Körper K.  Dann habe ich beliebiges L mit Polynom p und [m]L\subset N\subset K[/m] mit K abgeschlossen, N Zerf.körper von p über L. Die Aussage bleibt über N richtig, [m][N:L][/m] ist endlich. Jetzt muss ich allerdings Galoistheorie raufwerfen - ich will nämlich aus der Matrix A über N eine über L machen. Hier würde ich dann wohl die Galoiselemente passend jeweils zu den irreduziblen Faktoren von p "wirken" lassen und damit ein A' in L erhalte, dass dann hoffentlich das gleiche Minimalpolynom hat wie A.

SEcki

Bezug
        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Sa 15.05.2010
Autor: andreas

[]begleitmatrix beziehungsweise []frobenius normalform

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de