www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Minimalpolynom
Minimalpolynom < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimalpolynom: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:39 Fr 26.04.2013
Autor: Rated-R

Aufgabe
Beweisen Sie, dass für das Minimalpolynom einer n x n Matrix der Form [mm] K:=\pmat{ A & 0 \\ 0 & B } [/mm] gilt: [mm] p_K=kgV(p_A, p_B) [/mm]

Hallo,

leider fehlt mir die Idee wie ich an die Aufgabe herangehen kann.

ich habs mal über die Eigenwerte versucht:

Sei [mm] M_K\{\lambda_1,...\lambda_k\} [/mm] mit k [mm] \le [/mm] n, die Menge der Eigenverte von K

somit hat hat das char. Polynom von K die Form [mm] p_K(x)=(x-\lambda_1)*...*\lambda_k [/mm]

Sei [mm] M_A=\{mu_1,...,\mu_a\} [/mm] bzw. [mm] M_B=\{\nu_1,...,\nu_b\} [/mm]  mit a,b [mm] \le [/mm] k die Menge der Eigenwerte von A bzw. B

ich müsste ja jetzt zeigen das [mm] M_A, M_B \subset M_K [/mm] gilt, nur hab ich keine Idee welcher Satz das ausdrückt. Könnt ihr mir weiterhelfen? Oder bin ich komplett auf dem Holzweg?

gruß tom

        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Fr 26.04.2013
Autor: valoo


> Beweisen Sie, dass für das Minimalpolynom einer n x n
> Matrix der Form [mm]K:=\pmat{ A & 0 \\ 0 & B }[/mm] gilt:
> [mm]p_K=kgV(p_A, p_B)[/mm]
>  Hallo,
>  
> leider fehlt mir die Idee wie ich an die Aufgabe herangehen
> kann.
>  
> ich habs mal über die Eigenwerte versucht:
>  
> Sei [mm]M_K\{\lambda_1,...\lambda_k\}[/mm] mit k [mm]\le[/mm] n, die Menge
> der Eigenverte von K
>  
> somit hat hat das char. Polynom von K die Form
> [mm]p_K(x)=(x-\lambda_1)*...*\lambda_k[/mm]
>  

so sieht das aber nicht aus...

> Sei [mm]M_A=\{mu_1,...,\mu_a\}[/mm] bzw. [mm]M_B=\{\nu_1,...,\nu_b\}[/mm]  
> mit a,b [mm]\le[/mm] k die Menge der Eigenwerte von A bzw. B
>  
> ich müsste ja jetzt zeigen das [mm]M_A, M_B \subset M_K[/mm] gilt,
> nur hab ich keine Idee welcher Satz das ausdrückt. Könnt
> ihr mir weiterhelfen? Oder bin ich komplett auf dem
> Holzweg?
>  
> gruß tom

Rechne einfach mal das charakteristische Polynom aus. Dann bemerkst du auch, dass die Eigenwerte gerade die von A und B sind. Das Minimalpolynom ist ja ein Teiler des charakterischen Polynoms und zwar derart, dass K noch "Nullstelle" davon ist. A und B müssen beide verschwinden, da eine Potenz von K wieder eine Blockmatrix ist aus den Potenzen von A und B, also ist es das kleinste gemeinsame Vielfache beider Minimalpolynome.


Bezug
                
Bezug
Minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 Fr 26.04.2013
Autor: Rated-R

Vielen Dank für deine Hilfe,

ich komme leider nicht mehr ganz mit
wie kann ich denn das char. Polynom ausrechnen, alles was ich weiß ist doch die Form [mm] p_K(x)=(x-\lambda_1)*...*(x-\lambda_n) [/mm] bzw. [mm] p_K(x)=det(K-\lambda*E) [/mm] ? oder kann ich mit der Struktur der Matrix noch etwas anfangen?

gruß tom




Bezug
                        
Bezug
Minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 23:14 Fr 26.04.2013
Autor: valoo


> Vielen Dank für deine Hilfe,
>  
> ich komme leider nicht mehr ganz mit
>  wie kann ich denn das char. Polynom ausrechnen, alles was
> ich weiß ist doch die Form
> [mm]p_K(x)=(x-\lambda_1)*...*(x-\lambda_n)[/mm] bzw.
> [mm]p_K(x)=det(K-\lambda*E)[/mm] ? oder kann ich mit der Struktur
> der Matrix noch etwas anfangen?

erstmal sind die Rollen von K und $ [mm] \lambda \cdot [/mm] E $ vertauscht, man  will ja nen normiertes Polynom, aber das tut nichts zur Sache...
Was weißt du denn über die Berechnung der Determinante einer Blockmatrix? Und sowas kommt da ja gerade wieder bei raus...

>  
> gruß tom
>  
>
>  


Bezug
                                
Bezug
Minimalpolynom: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:43 Sa 27.04.2013
Autor: Rated-R

Vielen Dank!


Ich glaube ich habe den Ausdruck Blockmatrix noch nie in der Vorlesung gehört.

Bei der Spur einer Martrix kann man ja einfach sagen Spur(K)=Spur(A)+Spur(B)

Bei der determinante gilt demnach det(K)=det(A)*det(B)? Dann wäre

[mm] K-\lambda*E [/mm] = [mm] \pmat{ A-\lambda*E & 0 \\ 0 & B-\lambda*E } [/mm]

[mm] det(K-\lambda*E)=det(\pmat{ A-\lambda*E & 0 \\ 0 & B-\lambda*E }=det(A-\lambda*E [/mm] & [mm] 0)*det(B-\lambda*E )\Rightarrow p_K(\lambda)=p_A(\lambda)*p_B(\lambda) [/mm]

Jetzt weiß ich noch da [mm] m_A [/mm] bzw. [mm] m_B p_K [/mm] teilt. Ich steh noch auf dem Schlauch wie ich das konkrete minimalpolynom aus [mm] p_A [/mm] und [mm] p_B [/mm] allgemein bekomme. Wenn ich jetzt Zahlen hätte müsste ich ja ersteinmal alle möglichen Minimalpolynome nachrechnen?

gruß Tom




Bezug
                                        
Bezug
Minimalpolynom: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mo 29.04.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de