www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Minimum von einer Folge
Minimum von einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimum von einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 Mi 14.11.2007
Autor: Mathefragen

Hi! Ich habe als Aufgabe, dass ich von 2hoch n / n das Maximum, Supremum, usw. bestimmen soll! Ich hab bisher alles gelöst außer das Minimum, da es ja für den kleinsten Wert 2 zwei dazugehörige n gibt. Gibt es dann bei dieser Folge überhaupt ein Minimum? Oder ist das gar nicht vorhanden? Danke schon mal für Antworten :-)!

        
Bezug
Minimum von einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Mi 14.11.2007
Autor: kornfeld

Ich weiss nicht, ob ich dich richtig verstanden habe. Gegeben ist die Folge [mm] $2^n\over [/mm] n$ mit [mm] $n\in\IN$, [/mm] richtig? Der Zaehler waechst exponentiell in $n$ waehrend der Nenner nur linear waechst. Das heisst, das es ein Maximum nicht gibt. das Supremum ist unendlich. Die Folge ist nach unten beschraenkt und waechst monoton. Das Minimum laesst sich also leicht bestimmen.

K

Bezug
                
Bezug
Minimum von einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Mi 14.11.2007
Autor: Mathefragen

Danke erstmal für deine Antwort:). Aber mein Problem ist es das Minimum zu bestimmen, weil sowohl für n=1 als auch für n=2 der kleinste wert 2 rauskommt. Ich weiß also, dass 2 das infimum ist, aber wo genau ist jetzt das minimum, bei n=1 oder n=2, oder gibt es gar kein minimum?

Bezug
                        
Bezug
Minimum von einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 Mi 14.11.2007
Autor: kornfeld

Ich weiss nicht genau, weshalb dich das in Verwirrung stuerzt. Eine Funktion, eine Folge kann sehr wohl verschiedene Minima besitzen. Eindeutigkeit ist eine seltene Eiegenschaft. Jedoch ist der minimale "Wert" eindeutig (sonst waere es ja auch keine Infimum im Sinne einer unteren Schranke. Ich unterscheide zwischen einem Punkt (dem Inkrement einer Funktion oder der Index einer Folge) und dem zugehoerigen Wert. Zum Beispiel ist in [mm] $f(x_0)=\inf\{f(x):x\in I\}$ [/mm] der Punkt [mm] $x_0$ [/mm] der Punkt wo die Funktion $f$ minimal ist. Wie du [mm] $x_0$ [/mm] jetzt nennen willst, ist egal oder durch deinen Professor abgesprochen worden. Ich nenne es eine Minimalstelle der Funktion $f$. Hilft dir das?  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de