www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Minkowskische Ungleichung
Minkowskische Ungleichung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minkowskische Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:29 Mi 22.03.2017
Autor: X3nion

Guten Tag zusammen! :-)

Ich verstehe den Beweis zum Satz der Minkowskischen Ungleichung aus dem Forster nicht so ganz.

Der Satz lautet wie folgt: Sei p [mm] \in [/mm] [1, [mm] \infty[. [/mm] Dann gilt für alle x,y [mm] \in \IC^{n} [/mm]

[mm] ||x+y||_{p} \le ||x||_{p} [/mm] + [mm] ||y||_{q}. [/mm]

Beweis: Für p = 1 folgt der Satz direkt aus der Dreiecksungleichung für komplexe Zahlen. Sei nun p > 1 und q definiert durch [mm] \frac{1}{p} [/mm] + [mm] \frac{1}{q} [/mm] = 1. Es sei z [mm] \in \IC^{n} [/mm] der Vektor mit den Komponenten

[mm] z_{v}:= |x_{v} [/mm] + [mm] y_{v}|^{p-1}, [/mm] v = 1,...,n.

Dann ist [mm] z_{v}^{q} [/mm] = [mm] |x_{v} [/mm] + [mm] y_{v}|^{q(p-1)} [/mm] = [mm] |x_v [/mm] + [mm] y_v|^{p}, [/mm] also

[mm] ||z||_{q} [/mm] = [mm] ||x+y||_{q}^{\frac{p}{q}} [/mm]

Nach der Hölderschen Ungleichung gilt

[mm] \summe_{v} |x_v [/mm] + [mm] y_v|*|z_v| \le \summe_{v} |x_v z_v| [/mm] + [mm] \summe_{v} |y_v z_v| \le (||x||_p [/mm] + [mm] ||y||_p) ||z||_q, [/mm]

also nach Definition von z

[mm] ||x+y||_{p}^{p} \le (||x||_p [/mm] + [mm] ||x||_p) ||x+y||_{p}^{\frac{p}{q}} [/mm]

Da p - [mm] \frac{p}{q} [/mm] = 1, folgt daraus die Behauptung.

---


- Nun ist [mm] z_{v}^{q} [/mm] = [mm] |x_{v} [/mm] + [mm] y_{v}|^{q(p-1)} [/mm] = [mm] |x_v [/mm] + [mm] y_v|^{p} [/mm] wegen p = qp - q (was aus [mm] \frac{1}{p} [/mm] + [mm] \frac{1}{q} [/mm] = 1 folgt)

- Ferner ist [mm] ||z||_{q} [/mm] = [mm] ||x+y||_{q}^{\frac{p}{q}} [/mm] wegen

[mm] ||z||_{q} [/mm] = [mm] (\summe_{v=1}^{n} |z_{v}^{q}|)^{\frac{1}{q}} [/mm] = [mm] (\summe_{v=1}^{n} |x_v [/mm] + [mm] y_v|^{p})^{\frac{1}{q}} [/mm] =
[mm] [(\summe_{v=1}^{n}|x_v [/mm] + [mm] y_v|^{p})^{\frac{1}{p}}]^{\frac{p}{q}} [/mm] = [mm] ||x+y||_{p}^{\frac{p}{q}}. [/mm]

- Was mir auch klar ist, ist dass [mm] \summe_{v} |x_v z_v| [/mm] + [mm] \summe_{v} |y_v z_v| \le (||x||_p [/mm] + [mm] ||y||_p) ||z||_q [/mm]

wegen der Hölder'schen Ungleichung: [mm] \summe_{v} |x_v z_v| \le ||x||_p ||z||_q [/mm] und [mm] \summe_{v} |y_v z_v| \le ||y||_p ||z||_q [/mm]


=>
- Nun verstehe ich zum einen nicht, wieso [mm] \summe_{v} |x_v [/mm] + [mm] y_v|*|z_v| \le \summe_{v} |x_v z_v| [/mm] + [mm] \summe_{v} |y_v z_v| [/mm] ist, also welcher Satz für Ungleichungen hier benutzt wurde.

- Zum anderen verstehe ich nicht, wieso wegen p - [mm] \frac{p}{q} [/mm] = 1 schlussendlich die Behauptung folgt.


Ich wäre für eure Tipps wie immer sehr dankbar!

Viele Grüße,
X3nion


        
Bezug
Minkowskische Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Mi 22.03.2017
Autor: Gonozal_IX

Hiho,

> =>
> - Nun verstehe ich zum einen nicht, wieso [mm]\summe_{v} |x_v[/mm] +
> [mm]y_v|*|z_v| \le \summe_{v} |x_v z_v|[/mm] + [mm]\summe_{v} |y_v z_v|[/mm]  ist, also welcher Satz für Ungleichungen hier benutzt
> wurde.

amüsant: Das offensichtlichste von allen, verstehst du nicht. Du wirst dir gleich mit der Hand gegen den Kopf klatschen.

Es ist doch mit der simplen Dreiecksungleichung: [mm] $|x_v [/mm] + [mm] y_v|\cdot |z_v| [/mm] = [mm] |(x_v [/mm] + [mm] y_v)z_v| [/mm] = [mm] |x_vz_v [/mm] + [mm] y_vz_v| \le |x_vz_v| [/mm] + [mm] |y_vz_v|$ [/mm]


> - Zum anderen verstehe ich nicht, wieso wegen p -
> [mm]\frac{p}{q}[/mm] = 1 schlussendlich die Behauptung folgt.

Na weil deswegen [mm] $\frac{p}{q} [/mm] = p-1$ ist und wenn du das in Exponenten auf der rechten Seite einsetzt und dann auf beiden Seiten durch $ [mm] ||x+y||_{p}^{p-1}$ [/mm] dividierst, das Gewünschte da steht.

Gruß,
Gono

Bezug
                
Bezug
Minkowskische Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Mi 22.03.2017
Autor: X3nion


> Hiho,

Hi Gono und Dankeschön!

>  amüsant: Das offensichtlichste von allen, verstehst du
> nicht. Du wirst dir gleich mit der Hand gegen den Kopf
> klatschen.


> Es ist doch mit der simplen Dreiecksungleichung: [mm]|x_v + y_v|\cdot |z_v| = |(x_v + y_v)z_v| = |x_vz_v + y_vz_v| \le |x_vz_v| + |y_vz_v|[/mm]

Oh man, nicht mit der Hand sondern mit dem Hammer [bonk] [happy]
manchmal ist man echt blind für manche Sachen..

> > - Zum anderen verstehe ich nicht, wieso wegen p -
> > [mm]\frac{p}{q}[/mm] = 1 schlussendlich die Behauptung folgt.
>  
> Na weil deswegen [mm]\frac{p}{q} = p-1[/mm] ist und wenn du das in
> Exponenten auf der rechten Seite einsetzt und dann auf
> beiden Seiten durch [mm]||x+y||_{p}^{p-1}[/mm] dividierst, das
> Gewünschte da steht.
>  
> Gruß,
>  Gono

Viele Grüße,
X3nion


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de