www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Operations Research" - Minkowskisumme P+Q
Minkowskisumme P+Q < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minkowskisumme P+Q: Projektionslemma
Status: (Frage) beantwortet Status 
Datum: 09:03 Di 27.07.2010
Autor: Katrin89

Aufgabe
Beweise:
Die Minkowskisumme S=P+Q zweier beliebiger Polyeder P,Q ist selber ein Polyeder.

Hi,
ich möchte diesen Beweis mit dem Projektionslemma führen. Dieses besagt:  
Projektionslemma:
Die Projektion [mm] P_s [/mm] eines beliebigen Polyeders ist selber ein Polyeder. Es gilt: [mm] P_s=P(C,d) [/mm]
C,d kann man mit Hilfe des Fourier-Motzkin-Verfahren erhalten, in dem man die Variable, die durch das Projezieren herausfällt, eliminiert.
Kennt jemand diesen Beweis bzw. kann mir helfen?

Viele Grüße

        
Bezug
Minkowskisumme P+Q: Antwort
Status: (Antwort) fertig Status 
Datum: 09:13 Di 27.07.2010
Autor: fred97

Ich würde den Beweis mit dem Darstellungsatz für Polyeder (Satz von Minkowski-Weyl) führen


FRED

Bezug
                
Bezug
Minkowskisumme P+Q: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:42 Di 27.07.2010
Autor: Katrin89

Hi, danke dir.
Meinst du das hier:
P kann man darstellen als:
P=conv(V) + cone(W)?


Bezug
                        
Bezug
Minkowskisumme P+Q: Antwort
Status: (Antwort) fertig Status 
Datum: 10:34 Di 27.07.2010
Autor: fred97


> Hi, danke dir.
> Meinst du das hier:
> P kann man darstellen als:
> P=conv(V) + cone(W)?
>  


Ja

FRED


Bezug
                                
Bezug
Minkowskisumme P+Q: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:18 Di 27.07.2010
Autor: Katrin89

Hi Fred,
dann würde ich es so machen:
P,Q Polyeder
nach Weyl Minkowski gilt:
P=conv(V)+cone(W)
= P(C,d)+P(B,0)
Q=P(D,a)+P(E,0)
die Polyeder kann man mit dem FM Verfahren bestimmen.
P+Q=P(C,d)+P(B,0)+P(D,a)+P(E,0)
Die Summe ergibt ein Polyeder, oder?
Mmh, da fehlt doch sicher was, oder?

Dass conv(V)=P(C,d) und cone(W)=P(B,0) ist, ergibt sich aus dem FM Verfahren. Lt. Skript kann ich in dem System
Iz-Vx=0
x>=0
die x-Variablen mit dem FM Verfahren eliminieren und erhalte das Gewünschte, das ist ja eine Projektion, also kann ich sagen, dass das wieder Polyeder sind.
Die Summe von Polyedern ist wiederum ein Polyeder.
Was meinst du?


Bezug
                                        
Bezug
Minkowskisumme P+Q: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Fr 30.07.2010
Autor: martin2

bzw ganz einfach über das Projektionslemma:

Ax [mm] \le [/mm] b
By [mm] \le [/mm] d
z = x+y

Letzteres lässt sich umschreiben in eine Ungleichung mit x,y,z auf der linken Seite und diese Lösungsmenge ist ein Polyeder. Die Minkowski-Summe ist hier einfach die Projektion auf die z Koord. also auch ein Polyeder ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de