www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Minor einer Matrix
Minor einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minor einer Matrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:30 So 08.11.2009
Autor: Alex88

Aufgabe
Ein Minor einer Matrix ist die Determinante einer maximalen quadratischen Untermatrix. (z.B. hat eine 2x3-Matrix genau 3 Minoren.)
(a) Was sind die Minoren eines Spalten- bzw. Zeilenvektors?
(b)Man zeige: Jede nxm-Matrix A hat Rang <= min(n,m). Ist der Rang von A gleich min(n,m), so heißt A eine Matrix von Maximalrang.
(c)Man zeige: Eine Matrix hat genau dann Maximalrang, wenn nicht alle Minoren verschwinden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe mich insbesondere gefragt, was in teil (b) mit min(n,m) gemeint ist. Ich denke es wird nicht das Minimum von n und m sein sondern sich logischer weise auf den Minor beziehen.
Aber ist damit ein bestimmter Minor gemeint oder der größte?

Wenn ich mir folgende Matrix anschaue:
[mm] A:=\pmat{ 1 & 1 & 1 \\ 2 & 2 & 2 }\Rightarrow [/mm] rg(A)=0
da die beiden Zeilen linear abhängig sind.
Dann betrachte ich den Minor
[mm] \vmat{ 1 & 1 \\ 2 & 2 }=0 [/mm]
Stimmt also überein.

Betrachte ich aber die Matrix B
[mm] B:=\pmat{ 1 & 1 & 1 \\ 2 & 2 &2 \\ 1 & 0 & 0} [/mm]
Dann gibt es doch 4 Minoren. Drei sind Null und die vierte:
[mm] \vmat{ 2 & 2 \\ 1 & 0 } [/mm] = -2
aber das entspricht nicht dem Rang von B...


        
Bezug
Minor einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Mi 11.11.2009
Autor: Gonozal_IX

Hiho,

> Ich habe mich insbesondere gefragt, was in teil (b) mit
> min(n,m) gemeint ist. Ich denke es wird nicht das Minimum
> von n und m sein sondern sich logischer weise auf den Minor
> beziehen.

Da denkst du falsch. Mit min(a,b) wird hier schon das Minimum gemeint.
Das ist auch logisch, dass eine Matrix nicht einen grösseren Rang haben kann, als es Spalten bzw. Zeilen hat.

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de