www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Mittelwertsatz
Mittelwertsatz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelwertsatz: Fixpunkt
Status: (Frage) beantwortet Status 
Datum: 18:17 Sa 16.04.2005
Autor: johann1850

Hallo!
Hab eine Aufgabe,die ich lösen muss, hab  aber keine ahnung wie?

Es sei f : [0,1]  [mm] \to [/mm] [0,1] stetig. Zeigen Sie, dass f stets einen Fixpunkt  [mm] x_{0} \in [/mm] [0,1] besitzt, d.h. es ein [mm] x_{0} \in [/mm] [0,1] gibt mit  [mm] {f(x)}=x_{0}. [/mm]

Sage jetzt schon danke!!!

        
Bezug
Mittelwertsatz: Tipp
Status: (Antwort) fertig Status 
Datum: 18:37 Sa 16.04.2005
Autor: Max

Hallo,

nutze einfach den Zwischenwertsatz für stetige Funktionen auf die Funktion $g(x):=f(x)-x$.

Gruß Max

Bezug
                
Bezug
Mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 So 17.04.2005
Autor: johann1850

Hallo, das ist ja das problem, dass ich den Satz nicht anwenden kann?
Hab nicht mal die geringste Ahnung!

Bezug
                        
Bezug
Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 So 17.04.2005
Autor: Max

Naja, der Zwischenwertsatz besagt doch, dass es für jede stetige Funktion [mm] $g:[a;b]\to \IR$ [/mm] mit $g(a)<0$ und $g(b)>0$ ein [mm] $\zeta \in[a;b]$ [/mm] mit [mm] $g(\zeta)=0$. [/mm]

Wenn du mal überlegst, was mit Sicherheit für $g(0)$ und $g(1)$ gilt, da $f: [0;1] [mm] \to [/mm] [0;1]$ geht. Dann kannst du den Zwischenwertsatz anwenden, und wenn [mm] $g(\zeta)=0$ [/mm] ist, gilt ja wohl [mm] $f(\zeta)=\zeta$, [/mm] also ist [mm] $\zeta$ [/mm] der Fixpunkt von $f$.

Gruß Max

Bezug
                
Bezug
Mittelwertsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 So 17.04.2005
Autor: johann1850

naja g(0)=f(0)-0 also g(0)=f(0) und g(1)=f(1)-1, wie kann ich das vergleichen wenn ich nicht genau weiß was f(x) ist.
Außerdem um Mittelwertsatz anzuwenden muss ich doch zeigen dass f in (a,b) differnzierbar ist, nur dann kann ich [mm] \bruch{f(b)-f(a)}{b-a}=f^{'}(\zeta) [/mm] anwenden.
???

Bezug
                        
Bezug
Mittelwertsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 So 17.04.2005
Autor: Max


> naja g(0)=f(0)-0 also g(0)=f(0) und g(1)=f(1)-1, wie kann
> ich das vergleichen wenn ich nicht genau weiß was f(x)
> ist.

Naja, da ja $f: [0;1 [mm] ]\to [/mm] [0;1]$ muss [mm] $g(0)=f(0)-0\ge [/mm] 0$ gelten. Entsprechend gilt auch, dass [mm] $g(1)=f(1)-1\le [/mm] 0$ sein muss. Damit sind entweder $1$ und $0$ bereits Fixpunkte, oder es gelten die Vorasusetzungen für den Zwischenwertsatz von stetigen Funktionen.

>  Außerdem um Mittelwertsatz anzuwenden muss ich doch zeigen
> dass f in (a,b) differnzierbar ist, nur dann kann ich
> [mm]\bruch{f(b)-f(a)}{b-a}=f^{'}(\zeta)[/mm] anwenden.
>  ???

Ich rede vom Zwischenwertsatz und nicht vom Mittelwertsatz ;-)

Gruß Max



Bezug
                                
Bezug
Mittelwertsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 So 17.04.2005
Autor: johann1850

sorry jetzt weiß ich wieso ich mit der aufgabe überhaupt nichts anfangen konnte.
ZWISCHENWERTSATZ!!!

DANKE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de