www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Mittelwertsatz
Mittelwertsatz < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mittelwertsatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:39 Sa 02.07.2011
Autor: Jules-20

halli hallo,
ich habe hier genau gesagt drei aufgaben zu dem mittelwertsatz und komm nich mal ansatzweise damit zurecht :(
die aufgaben lauten:

mit hilfe des mittelwersatzes bzw des verallgemeinerten mittelwertsatzes der differentialrechnung beweise man folgende aussagen:

a, die funktion f:(0,unendlich) --> R mit f(x)= (x-1)/(x ln (x)) ist monoton fallend

b, [mm] e^x(y-x) [/mm] < [mm] e^y- e^x [/mm] < [mm] e^y(y-x) [/mm] für x<y

c, gegeben seien die beiden stetigen Funktionen f,g[a,b]-->R, die auf (a,b) differenzierbar seien und f(a) = g(a). Man zeige die golgende Behauptung:
0 <(gleich) f´(x) < g´(x) auf 8a,b9 --> f(x) < g(x) auf (a,b]

bei a kann ich mir vorstellen, dass ich iwie die def von einer monoton fallenden funktion mit einbauen muss, aber wie genau das aussehen soll, da hab ich echt kein plan. wir habe zwar in der übung aufgaben zu dem mws gemacht,aber die sahen komplett anders aus :(

ich hoffe es kann mir jmd ein paar denkanstöße geben
einen schönen samstag noch

liebe grüße jule

        
Bezug
Mittelwertsatz: zu a)
Status: (Antwort) fertig Status 
Datum: 11:45 So 03.07.2011
Autor: M.Rex

Hallo

Zu Aufgabe a)

Zeige, dass [mm]\forall0 [mm] \frac{\overbrace{\frac{b-1}{b\cdot\ln(b)}}^{f(b)}-\overbrace{\frac{a-1}{a\cdot\ln(a)}}^{f(a)}}{b-a}<0 [/mm]

Marius


Bezug
        
Bezug
Mittelwertsatz: Eine Idee zu c)
Status: (Antwort) fertig Status 
Datum: 11:57 So 03.07.2011
Autor: M.Rex

Hallo

Zu Aufgabe c) mal folgende Idee, ob sie Funktioniert, weiss ich aber nicht, ich habe sie nicht zuende gedacht.

Es gilt für [mm] x\in[a;b] [/mm]

$ [mm] 0\leq f'(x)\leq [/mm] g'(x) $

Schreiben wir die Differenzierbarbkeitsdefinition mal hin:

$ [mm] 0\leq\limes_{b\to a}\frac{f(b)-f(a)}{b-a}\leq\limes_{b\to a}\frac{g(b)-g(a)}{b-a}$ [/mm]

Nun gilt: f(a)=g(a), aslo soll gelten:

$ [mm] 0\leq\limes_{b\to a}\frac{f(b)-g(a)}{b-a}\leq\limes_{b\to a}\frac{g(b)-g(a)}{b-a}$ [/mm]

Zeige, dass daraus f(x)<g(x) folgt.

Ich würde das mit einem Widerspruchsbeweis zu der Aussage des Mittelwertsatzes versuchen, aber wie gesagt, das ist nur eine Idee.

Marius


Bezug
        
Bezug
Mittelwertsatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:27 Mo 04.07.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de