www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Modellierung von Part.DGL
Modellierung von Part.DGL < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modellierung von Part.DGL: Aufgabe
Status: (Frage) überfällig Status 
Datum: 01:50 Fr 25.06.2010
Autor: srg83

Aufgabe
Ein Würfel mit der Kantenlänge L und Anfangstemperatur 20 Grad wird in einem Wasserbad erhitzt. Dabei erhöht sich die Temperatur des Wassers um 5 Grad je Minute von 20 auf 40 Grad. Wie ist die Temperaturverteilung im Würfel?

Ich komme ned zurecht, wie ich die dazugehörige partielle DGL erstelle. Das ist m.A. ne Anfangs-randwertaufgabe, da die Anfangstemperatur vorgegeben ist und der Wärmestrom als Temperaturendifferenz (40-20) auch gegeben ist. Aber wie man das mathematisch formuliert, ist mir nicht ganz klar.
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: gutefrage.de

        
Bezug
Modellierung von Part.DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:54 Fr 25.06.2010
Autor: chrisno

Hallo,

schon den Wärmestrom kann ich mit diesen Angaben nicht berechnen.
Da alle Angaben zum Material des Würfels fehlen, sehe ich nur die Möglichkeit für eine generelle Beschreibung, bei der noch etliche Parameter frei sind.

Solltst Du das analytisch oder nummerisch lösen?

Generell sehe ich den Ansatz mit einer Zerlegung in infinitesimal große Teilwürfel. Der Wärmestrom durch einen Würfel ergibt sich durch die Differenz der Temperaturen seiner Seitenflächen. Allerdings wird ein Teil des Wärmesroms in den Würfel abgezweigt. Dadurch wird der Würfel selbst erwärmt.

Gerade bei einer nummerischen Lösung musst Du nur ein 24tel des Würfels betrachten. Der Rest ergibt sich aus der Symmetrie.

Bezug
                
Bezug
Modellierung von Part.DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:15 Fr 25.06.2010
Autor: srg83

Servus chrisno! Es geht um die Modellierung einer Anfangswert- bzw Randwert- bzw Anfangsrandwertwertaufgabe. Das Ziel ist eine Partielle Differentialgleichung aufzustellen (samt Anfangs- und Randbedingungen). Numerik erübrigt sich bei dieser Aufgabe, denn man braucht diese Aufgabe nicht zu lösen, nur modeliieren. Danke im Voraus!

Bezug
                        
Bezug
Modellierung von Part.DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:16 Fr 25.06.2010
Autor: chrisno

Hallo,

ich bleib mal bei einer Mitteilung, damit das auch andere lesen, die mehr Ahnung als ich haben.
Die []Wärmeleitungsgleichung ist die Differentialgleichung. Die Randbedingungen sind dann $u(x,y,z,t) = 20$ für $t=0$, $u(x,y,z,t) = 20 + 5 [mm] \cdot [/mm] t$ für den entsprechenden Zeitraum auf den Würfelflächen und $u(x,y,z,t) = 40$ auf den Würfelflächen für die folgende Zeit.

Bezug
        
Bezug
Modellierung von Part.DGL: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:47 So 27.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de