www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Modular-Rechnung
Modular-Rechnung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modular-Rechnung: neue Aufgabe (1)
Status: (Frage) beantwortet Status 
Datum: 11:52 Sa 05.10.2013
Autor: pc_doctor

Aufgabe
[mm] 14^{17} [/mm] mod 9

Hallo, ich übe noch weiter an den mod Aufgaben und jetzt habe ich eine Aufgabe , bei der der Exponent eine Primzahl ist. Hab mir deshalb den Kleinen Fermatschen Satz angeguckt, aber blicke da nicht so durch, deswegen bin ich ohne Anwendung des Satzes wie folgt vorgegangen:

[mm] 14^{17} [/mm] mod 9 [mm] \equiv (14^{10} [/mm] * [mm] 14^{7} [/mm] ) mod 9 [mm] \equiv [/mm]


Und jetzt eine kleine Nebenrechnung nur für " [mm] 14^{10} [/mm] mod 9 "

[mm] 14^{10} [/mm] mod 9 [mm] \equiv 14^{5} [/mm] * [mm] 14^{5} [/mm] mod 9 [mm] \equiv [/mm]

Und jetzt berechne ich erstmal NUR " [mm] 14^{5} [/mm] mod 9 "

.. [mm] (1*9+5)^{5} [/mm] mod 9 [mm] \equiv 5^{5} [/mm] mod 9 [mm] \equiv [/mm] 3125 [mm] \equiv [/mm] 2 mod 9

Das ist jetzt nur der Rest für [mm] 14^{5} [/mm] mod 9 , ich will aber von [mm] 14^{10} [/mm] muss ich jetzt also die 2 hoch 5 nehmen , also [mm] 2^{5} [/mm] = 32

Und dann wieder zur Ausgangslage zurück ( 32 gemerkt )

[mm] 14^{17} [/mm] mod 9 = (32 * [mm] 14^{7} [/mm] ) mod 9 [mm] \equiv... [/mm]

Ist das so richtig , dass ich zuerst Teile berechne und jetzt nur noch [mm] 14^{7} [/mm] mod 9 rechnen muss ?

Danke im Voraus

        
Bezug
Modular-Rechnung: neuer Thread
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:54 Sa 05.10.2013
Autor: M.Rex

Hallo

Ich habe diese neue Aufgabe mal in eine neue Diksussion gepackt.

Marius

Bezug
        
Bezug
Modular-Rechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Sa 05.10.2013
Autor: reverend

Hallo pcdr,

auch hier läuft irgendwas schief.

> [mm]14^{17}[/mm] mod 9

...soll wohl bestimmt werden. Man erwartet ein Ergebnis zwischen 0 und 8.

> Hallo, ich übe noch weiter an den mod Aufgaben und jetzt
> habe ich eine Aufgabe , bei der der Exponent eine Primzahl
> ist. Hab mir deshalb den Kleinen Fermatschen Satz
> angeguckt, aber blicke da nicht so durch,

Offenbar. Für den kleinen Fermat ist nur erheblich, ob der Modul eine Primzahl ist. Und das ist 9 sicher nicht.

> deswegen bin ich
> ohne Anwendung des Satzes wie folgt vorgegangen:

>

> [mm]14^{17}[/mm] mod 9 [mm]\equiv (14^{10}[/mm] * [mm]14^{7}[/mm] ) mod 9 [mm]\equiv[/mm]

Soweit ok.

> Und jetzt eine kleine Nebenrechnung nur für " [mm]14^{10}[/mm] mod
> 9 "

>

> [mm]14^{10}[/mm] mod 9 [mm]\equiv 14^{5}[/mm] * [mm]14^{5}[/mm] mod 9 [mm]\equiv[/mm]

>

> Und jetzt berechne ich erstmal NUR " [mm]14^{5}[/mm] mod 9 "

>

> .. [mm](1*9+5)^{5}[/mm] mod 9 [mm]\equiv 5^{5}[/mm] mod 9 [mm]\equiv[/mm] 3125 [mm]\equiv[/mm]
> 2 mod 9

Stimmt auch.

> Das ist jetzt nur der Rest für [mm]14^{5}[/mm] mod 9 , ich will
> aber von [mm]14^{10}[/mm] muss ich jetzt also die 2 hoch 5 nehmen ,
> also [mm]2^{5}[/mm] = 32

Nein. Wie Du oben noch richtig schreibst, ist doch [mm] 14^{10}=14^5*14^5=(14^5)^2. [/mm]

Also ist [mm] 14^{10}\equiv(14^5)^2\equiv 2^2\equiv 4\mod{9} [/mm]

> Und dann wieder zur Ausgangslage zurück ( 32 gemerkt )

>

> [mm]14^{17}[/mm] mod 9 = (32 * [mm]14^{7}[/mm] ) mod 9 [mm]\equiv...[/mm]

>

> Ist das so richtig , dass ich zuerst Teile berechne und
> jetzt nur noch [mm]14^{7}[/mm] mod 9 rechnen muss ?

Vom Ansatz her geht das, aber so richtig geschickt ist es nicht. Mal anders angesetzt:

1) [mm] 14\equiv 5\mod{9}\quad\Rightarrow\quad 14^{17}\equiv 5^{17}\mod{9} [/mm]

2) [mm] 17=16+1=2^4+1\quad\Rightarrow\quad 5^{17}\equiv 5^{(2^4)}*5\equiv \left(\left((5^2)^2\right)^2\right)^2*5\mod{9} [/mm]

...und das ist nun schnell berechnet.

[mm] 5^2\equiv 7\mod{9},\;\;\ (5^2)^2\equiv 7^2\equiv 4\mod{9},\;\;\ \left((5^2)^2\right)^2\equiv 4^2\equiv 7\mod{9},\;\;\ \left(\left((5^2)^2\right)^2\right)^2\equiv 7^2\equiv 4\mod{9} [/mm]

Letzter Schritt: [mm] 14^{17}\equiv 5^{16}*5\equiv 4*5\equiv 2\mod{9} [/mm]

Das war jetzt relativ ausführlich aufgeschrieben. Ich hoffe, Du steigst durch.

***

Es gibt noch einen kürzeren Weg, wenn man [mm] 5^3\equiv -1\mod{9} [/mm] herausfindet. Es lohnt sich oft, ein paar kleine Potenzen zu ermitteln.

Dann hat man [mm] 14^{17}\equiv 5^{17}\equiv 5^{5*3+2}\equiv (5^3)^5*5^2\equiv (-1)^5*(-2)\equiv 2\mod{9}. [/mm] Fertig.

Grüße
reverend

Bezug
                
Bezug
Modular-Rechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:38 Sa 05.10.2013
Autor: pc_doctor

Ich habe wohl zu schnell geantwortet. Hab den Ansatz jetzt verstanden , aber ich habe noch paar Fragen:

> Vom Ansatz her geht das, aber so richtig geschickt ist es nicht. Mal anders angesetzt:

> 1) $ [mm] 14\equiv 5\mod{9}\quad\Rightarrow\quad 14^{17}\equiv [/mm] > [mm] 5^{17}\mod{9} [/mm] $

Okay, das verstehe ich noch.

> 2) $ [mm] 17=16+1=2^4+1\quad\Rightarrow\quad 5^{17}\equiv >5^{(2^4)}\cdot{}5\equiv \left(\left((5^2)^2\right)^2 >\right)^2\cdot{}5\mod{9} [/mm] $

Hier zerteilt man sozusagen den Exponenten bzw schreibt ihn anders auf. [mm] 5^{17} \equiv \Rightarrow 5^{2}^{4} [/mm] , das ist doch eigentlich [mm] 5^{8} [/mm] und * 5 ist dann [mm] 5^{9}. [/mm]
Wie kommst du hier auf " [mm] 5^{(2^4)}*5 [/mm] "

EDIT: Ich habs verstanden , hab mich verguckt. [mm] 2^{4} [/mm] = 16 => [mm] 5^{{2^4}} [/mm] = [mm] 5^{16} [/mm] * 5 = [mm] 5^{17} [/mm]

Den Rest habe ich verstanden, danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de