www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Moduln, Algebren, Vektorräume
Moduln, Algebren, Vektorräume < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Moduln, Algebren, Vektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:27 Di 19.10.2010
Autor: cantor

Hallo!

Hier meine wohl letze Frage zu meiner Algebra II Vorlesung. Über kurzes Feedback würde ich mich sehr freuen.

In meiner Vorlesung werden die Begriffe A-Moduln, k-Vektorräume und A-Algebren thematisiert. A bezeichnet dabei immer einen Ring und k einen Körper.

Der genaue Zusammenhang zwischen den Begriffen steht nirgendwo. Habe ich ihn mir so richtig zusammengereimt?

1) Jede A-Algebra ist ein A-Modul
2) Jeder k-Vektorraum ist ein k-Modul
3) Jede k-Algebra ist ein k-Vektorraum

4) Zwischen A-Algebren und k-Vektorräumen gibt es keine allgemeine Inklusionsbeziehung, weil
- A im allgemeinen kein Körper ist
- in einem Vektorraum die Addition nur die Struktur einer abelschen Gruppe hat (in einer Algebra aber die Struktur eines Ringes)

Stimmt so?

Vielen Dank!

cantor

        
Bezug
Moduln, Algebren, Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 15:43 Di 19.10.2010
Autor: statler

Auch hallo!

> Hier meine wohl letze Frage zu meiner Algebra II Vorlesung.
> Über kurzes Feedback würde ich mich sehr freuen.
>  
> In meiner Vorlesung werden die Begriffe A-Moduln,
> k-Vektorräume und A-Algebren thematisiert. A bezeichnet
> dabei immer einen Ring und k einen Körper.
>  
> Der genaue Zusammenhang zwischen den Begriffen steht
> nirgendwo. Habe ich ihn mir so richtig zusammengereimt?
>  
> 1) Jede A-Algebra ist ein A-Modul
>  2) Jeder k-Vektorraum ist ein k-Modul
>  3) Jede k-Algebra ist ein k-Vektorraum

Das stimmt (nach heutigem Sprachgebrauch) so.

> 4) Zwischen A-Algebren und k-Vektorräumen gibt es keine
> allgemeine Inklusionsbeziehung, weil
> - A im allgemeinen kein Körper ist
> - in einem Vektorraum die Addition nur die Struktur einer
> abelschen Gruppe hat (in einer Algebra aber die Struktur
> eines Ringes)

Wenn du alte Bücher guckst, waren Algebren (damals hyperkomplexe Systeme genannt) selbst Vektorräume über Körpern. Typische Beispiele waren eben Matrizenringe.

Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Moduln, Algebren, Vektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:13 Di 19.10.2010
Autor: cantor

Hallo Dieter,

Besten Dank für die schnelle Rückmeldung!

cantor

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de