www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Modulo Gleichungssysteme
Modulo Gleichungssysteme < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modulo Gleichungssysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:47 Mo 04.04.2011
Autor: bonzai0710

Aufgabe
Hat das folgende Gleichungssystem eine Lösung? Wenn ja, dann bestimme diese.

a)
x [mm] \equiv [/mm] 2 mod 3
x [mm] \equiv [/mm] 2 mod 9
x [mm] \equiv [/mm] 1 mod 10

b)
x [mm] \equiv [/mm] 1 mod 5
x [mm] \equiv [/mm] 3 mod 9
x [mm] \equiv [/mm] 2 mod 10

Mir ist grundsätzlich klar wie ich die Werte für x berechne das problem ist nur das ich dieses verfahren hier noch nicht anwenden  kann da die modulo nicht teilerfremd sind.

Für a sind die werte 3 und 9 nicht teilerfremd:

x [mm] \equiv [/mm] 2 mod 3
x [mm] \equiv [/mm] 2 mod 9

und bei b 5 und 10:

x [mm] \equiv [/mm] 1 mod 5
x [mm] \equiv [/mm] 2 mod 10

In der Vorlesung hat unser prof gesagt man kanns reduzieren bloß das WIE darf ich reduzieren damit ich nichts verändere hab ich nicht verstanden.

Ich bitte darum keine fertige Lösung zu präsentieren sondern wenn möglich in Worten zu erklären WIE ich reduzieren kann. (oder anhand eines anderen Beispieles erklären)

mfg
Christoph

        
Bezug
Modulo Gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 Mo 04.04.2011
Autor: fred97

Schau mal hier:

          http://de.wikipedia.org/wiki/Chinesischer_Restsatz

FRED

Bezug
        
Bezug
Modulo Gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 Mo 04.04.2011
Autor: MatheStudi7

Hallo Christoph,


x $ [mm] \equiv [/mm] $ 2 mod 9 kannste du "vereinfachen" in zweimal x $ [mm] \equiv [/mm] $ 2 mod 3 ,
womit es quasi einmal wegfällt.

Du musst also nur das Gleichungssystem
x $ [mm] \equiv [/mm] $ 2 mod 3
x $ [mm] \equiv [/mm] $ 1 mod 10
lösen.

Bei der b) kannst du
"x $ [mm] \equiv [/mm] $ 2 mod 10"  in "x $ [mm] \equiv [/mm] $ 2 mod 2" und "x $ [mm] \equiv [/mm] $ 2 mod 5" aufteilen.  
Da du nun aber
"x $ [mm] \equiv [/mm] $ 1 mod 5"  und "x $ [mm] \equiv [/mm] $ 2 mod 5 "
da stehen hast, ist das Gleichungssystem aber nicht lösbar (glaube ich ?).


Ciao






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de