www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Monoidringe
Monoidringe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monoidringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 Sa 04.01.2014
Autor: UniversellesObjekt

Aufgabe
$A$ sei ein kommutativer Ring, $G$, $G'$ seien multiplikative Monoide und [mm] $\varphi\colon G\longrightarrow [/mm] G'$ sei ein Monoid-Homomorphismus. Dann existiert ein eindeutiger Ringhomomorphismus [mm] $h\colon A[G]\longrightarrow [/mm] A[G']$, sodass [mm] $h(x)=\varphi(x)$ [/mm] für alle [mm] $x\in [/mm] G$ und $h(a)=a$ für alle [mm] $a\in [/mm] A$. $A[G]$ bezeichnet hierbei den []Monoidring über $A$.

Hallo,

Es ist ja klar, dass [mm] $h\colon A[G]\longrightarrow [/mm] A[G']$ gegeben sein muss durch [mm] $\sum_x a_x x\longmapsto\sum_x a_x \varphi(x)$; [/mm] das reicht auch um $h$ zu definieren, da ich jedes Element in $A[G]$ eindeutig auf diese Weise schreiben kann. Dass $h$ ein Homomorphismus in Bezug auf die additive Struktur von $A[G]$ und $A[G']$ ist, ist auch klar.

Wenn ich mir Multiplikation angucke, wäre es ja schön, einfach zu schreiben:

[mm] $h((\sum_x a_x x)(\sum_y b_y y))=h(\sum_{x,y}a_xb_y xy)=\sum_{x,y}a_xb_y\varphi(xy)=\sum_{x,y}a_xb_y\varphi(x)\varphi(y)=(\sum_x a_x\varphi(x))(\sum_x b_y\varphi(y)=h(\sum_x a_x x)h(\sum_y b_y [/mm] y)$.
Aber weil ich $h$ ja nur für Summen der Form [mm] $\sum_x a_x [/mm] x$ definiert habe, ist das mit diesen Doppelindizes etwas unsauber, darum würde ich gerne

[mm] h(\sum_z(\sum_{xy=z}a_xb_y) z)=h(\sum_x a_x x)h(\sum_y b_y [/mm] y)$ da stehen haben, aber das kriege ich nicht sauber aufgeschrieben.

Kann jemand helfen?

Liebe Grüße,
UniversellesObjekt

        
Bezug
Monoidringe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:08 Sa 04.01.2014
Autor: felixf

Moin UniversellesObjekt,

> [mm]A[/mm] sei ein kommutativer Ring, [mm]G[/mm], [mm]G'[/mm] seien multiplikative
> Monoide und [mm]\varphi\colon G\longrightarrow G'[/mm] sei ein
> Monoid-Homomorphismus. Dann existiert ein eindeutiger
> Ringhomomorphismus [mm]h\colon A[G]\longrightarrow A[G'][/mm],
> sodass [mm]h(x)=\varphi(x)[/mm] für alle [mm]x\in G[/mm] und [mm]h(a)=a[/mm] für
> alle [mm]a\in A[/mm]. [mm]A[G][/mm] bezeichnet hierbei den
> []Monoidring über
> [mm]A[/mm].
>
>  Hallo,
>  
> Es ist ja klar, dass [mm]h\colon A[G]\longrightarrow A[G'][/mm]
> gegeben sein muss durch [mm]\sum_x a_x x\longmapsto\sum_x a_x \varphi(x)[/mm];
> das reicht auch um [mm]h[/mm] zu definieren, da ich jedes Element in
> [mm]A[G][/mm] eindeutig auf diese Weise schreiben kann. Dass [mm]h[/mm] ein
> Homomorphismus in Bezug auf die additive Struktur von [mm]A[G][/mm]
> und [mm]A[G'][/mm] ist, ist auch klar.

[ok]

> Wenn ich mir Multiplikation angucke, wäre es ja schön,
> einfach zu schreiben:
>  
> [mm]h((\sum_x a_x x)(\sum_y b_y y))=h(\sum_{x,y}a_xb_y xy)=\sum_{x,y}a_xb_y\varphi(xy)=\sum_{x,y}a_xb_y\varphi(x)\varphi(y)=(\sum_x a_x\varphi(x))(\sum_x b_y\varphi(y)=h(\sum_x a_x x)h(\sum_y b_y y)[/mm].
>  
> Aber weil ich [mm]h[/mm] ja nur für Summen der Form [mm]\sum_x a_x x[/mm]
> definiert habe, ist das mit diesen Doppelindizes etwas
> unsauber, darum würde ich gerne
>  
> [mm]h(\sum_z(\sum_{xy=z}a_xb_y) z)=h(\sum_x a_x x)h(\sum_y b_y[/mm]
> y)$ da stehen haben, aber das kriege ich nicht sauber
> aufgeschrieben.

Warum nicht? Bzw. was genau nicht?

Du musst ja zeigen:

(i) [mm] $(\sum_x a_x [/mm] x) [mm] (\sum_y b_y [/mm] y) = [mm] \sum_z (\sum_{xy=z} a_x b_y) [/mm] z$ (wobei die innere Summe endlich ist, da [mm] $(a_x, b_y) \neq [/mm] (0, 0)$ nur fuer endlich viele $(x, y)$ der Fall ist);

(ii) [mm] $\sum_z (\sum_{xy=z} a_x b_y) [/mm] h(z) = [mm] (\sum_x a_x [/mm] h(x)) [mm] (\sum_y b_y [/mm] h(y))$.

Damit haettest du die gesuchte Gleichheit. Oder ist deine Frage (im wesentlichen), wie man diese beiden Gleichheiten zeigt? (Teil (i) folgt ja aus (ii) fuer $h = [mm] id_G$.) [/mm]

LG Felix


Bezug
                
Bezug
Monoidringe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:51 So 05.01.2014
Autor: UniversellesObjekt


> (i) [mm](\sum_x a_x x) (\sum_y b_y y) = \sum_z (\sum_{xy=z} a_x b_y) z[/mm]
> (wobei die innere Summe endlich ist, da [mm](a_x, b_y) \neq (0, 0)[/mm]
> nur fuer endlich viele [mm](x, y)[/mm] der Fall ist);
>  
> (ii) [mm]\sum_z (\sum_{xy=z} a_x b_y) h(z) = (\sum_x a_x h(x)) (\sum_y b_y h(y))[/mm].
>  
> Damit haettest du die gesuchte Gleichheit. Oder ist deine
> Frage (im wesentlichen), wie man diese beiden Gleichheiten
> zeigt? (Teil (i) folgt ja aus (ii) fuer [mm]h = id_G[/mm].)
>  
> LG Felix


Hi Felix,

Danke für deine Antwort. Ja, das zu zeigen habe ich nicht hinbekommen, wobei (i) aber meine Definition der Multiplikation ist; es geht also nur um (ii). Hier sollte es heißen [mm]\sum_z (\sum_{xy=z} a_x b_y) \varphi(z) = (\sum_x a_x \varphi(x)) (\sum_y b_y \varphi(y))[/mm], also [mm] $\varphi$ [/mm] anstelle von $h$, das war wohl ein Vertipper.

Ich habe das jetzt so gemacht, es wäre super, wenn du mal gucken könntest, ob das passt:

[mm] $h((\sum_{x\in G}a_x x)(\sum_{y\in G}b_y [/mm] y))$

[mm] $=h(\sum_{z\in G}(\sum_{xy=z}a_xb_y)z)$ [/mm]

[mm] $=\sum_{z'\in G'}(\sum_{\varphi(z)=z'}(\sum_{xy=z}a_xb_y))z'$ [/mm]

[mm] $=\sum_{z'\in G'}(\sum_{\varphi(x)\varphi(y)=z'}a_xb_y)z'$ [/mm]

[mm] $=\sum_{z'\in G}(\sum_{x'\cdot y'=z',\ \varphi(x)=x',\ \varphi(y)=y'}a_xb_y)z'$ [/mm]

[mm] $=\varphi{z'\in G'}(\sum_{x'y'=z'}(\sum_{\varphi(x)=x',\ \varphi(y)=y'}a_xb_y))z'$ [/mm]

[mm] $=\sum_{z'\in G'}(\sum_{x'y'=z'}((\sum_{\varphi(x)=x'}a_x)(\sum_{\varphi(y)=y'}b_y)))z'$ [/mm]

[mm] $=(\sum_{x'\in G'}(\sum_{\varphi(x)=x'}a_x)x')(\sum_{y'\in G'}(\sum_{\varphi(y)=y'}b_y)y')$ [/mm]

[mm] $=h(\sum_{x\in G}a_x x)h(\sum_{y\in G}b_y [/mm] y)$

Ich weiß, das sieht jetzt ziemlich hässlich aus, aber ich wäre echt dankbar, wenn du mir bescheid geben könntest, ob das so stimmt.

Liebe Grüße,
UniversellesObjekt

Bezug
                        
Bezug
Monoidringe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 So 05.01.2014
Autor: felixf

Moin universelles Objekt,

> > (i) [mm](\sum_x a_x x) (\sum_y b_y y) = \sum_z (\sum_{xy=z} a_x b_y) z[/mm]
> > (wobei die innere Summe endlich ist, da [mm](a_x, b_y) \neq (0, 0)[/mm]
> > nur fuer endlich viele [mm](x, y)[/mm] der Fall ist);
>  >  
> > (ii) [mm]\sum_z (\sum_{xy=z} a_x b_y) h(z) = (\sum_x a_x h(x)) (\sum_y b_y h(y))[/mm].
>  
> >  

> > Damit haettest du die gesuchte Gleichheit. Oder ist deine
> > Frage (im wesentlichen), wie man diese beiden Gleichheiten
> > zeigt? (Teil (i) folgt ja aus (ii) fuer [mm]h = id_G[/mm].)
>  
> Danke für deine Antwort. Ja, das zu zeigen habe ich nicht
> hinbekommen, wobei (i) aber meine Definition der
> Multiplikation ist;

stimmt :)

> es geht also nur um (ii). Hier sollte
> es heißen [mm]\sum_z (\sum_{xy=z} a_x b_y) \varphi(z) = (\sum_x a_x \varphi(x)) (\sum_y b_y \varphi(y))[/mm],
> also [mm]\varphi[/mm] anstelle von [mm]h[/mm], das war wohl ein Vertipper.

Ja, bzw. das gleiche, da ja $h(z) = [mm] \varphi(z)$ [/mm] ist fuer $z [mm] \in [/mm] G$.

> Ich habe das jetzt so gemacht, es wäre super, wenn du mal
> gucken könntest, ob das passt:
>  
> [mm]h((\sum_{x\in G}a_x x)(\sum_{y\in G}b_y y))[/mm]
>  
> [mm]=h(\sum_{z\in G}(\sum_{xy=z}a_xb_y)z)[/mm]
>  
> [mm]=\sum_{z'\in G'}(\sum_{\varphi(z)=z'}(\sum_{xy=z}a_xb_y))z'[/mm]
>  
> [mm]=\sum_{z'\in G'}(\sum_{\varphi(x)\varphi(y)=z'}a_xb_y)z'[/mm]

Hiervor wuerd ich noch den Zwischenschritt [mm] $\sum_{z'\in G'}(\sum_{\varphi(x y)=z'}a_xb_y)z'$ [/mm] einfuegen.

> [mm]=\sum_{z'\in G}(\sum_{x'\cdot y'=z',\ \varphi(x)=x',\ \varphi(y)=y'}a_xb_y)z'[/mm]
>  
> [mm]=\varphi{z'\in G'}(\sum_{x'y'=z'}(\sum_{\varphi(x)=x',\ \varphi(y)=y'}a_xb_y))z'[/mm]
>  
> [mm]=\sum_{z'\in G'}(\sum_{x'y'=z'}((\sum_{\varphi(x)=x'}a_x)(\sum_{\varphi(y)=y'}b_y)))z'[/mm]
>  
> [mm]=(\sum_{x'\in G'}(\sum_{\varphi(x)=x'}a_x)x')(\sum_{y'\in G'}(\sum_{\varphi(y)=y'}b_y)y')[/mm]
>  
> [mm]=h(\sum_{x\in G}a_x x)h(\sum_{y\in G}b_y y)[/mm]
>  
> Ich weiß, das sieht jetzt ziemlich hässlich aus, aber ich
> wäre echt dankbar, wenn du mir bescheid geben könntest,
> ob das so stimmt.

Ja, das stimmt so.

Aber vielleicht solltest du ganz am Anfang (dort wo du $h$ definierst) noch schreiben, dass [mm] $h(\sum_x a_x [/mm] x) = [mm] \sum_{x'} (\sum_{\varphi(x)=x'} a_x) [/mm] x'$ die "richtige" Definition von $h$ ist. (Falls du das nicht eh schon machst :) )

LG Felix


Bezug
                                
Bezug
Monoidringe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:52 So 05.01.2014
Autor: UniversellesObjekt

Supi, Danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de