www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Monotone Funktion + Umkehrfkt
Monotone Funktion + Umkehrfkt < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotone Funktion + Umkehrfkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:00 Do 11.03.2010
Autor: ChopSuey

Hallo,

mich würde folgendes interessieren:

Sei $\ D [mm] \subset \IR [/mm] $ ein Intervall und $\ f:D [mm] \to \IR [/mm] $ eine monoton wachsende (oder fallende) Funktion.

Muss $\ f $ stetig sein, damit $\ D $ auf $\ D' = f(D) $ bijektiv abgebildet wird? Bzw muss $\ f $ stetig sein, damit die Umkehrfunktion $\ [mm] f^{-1}:D' \to [/mm] D$ existiert und ebenfalls streng monoton wachsend/fallend ist?

Kann ich also, wenn $\ f $ nicht zwangsläufig stetig sein muss, davon ausgehen, dass wenn $\ f $ monoton wachsend/fallend ist, die Umkehrfunktion $\ [mm] f^{-1} [/mm] $ existiert und ebenfalls streng monoton wachsend/fallend ist?

Freue mich über eine Antwort.
Grüße
ChopSuey



        
Bezug
Monotone Funktion + Umkehrfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Do 11.03.2010
Autor: pelzig


> Sei [mm]\ D \subset \IR[/mm] ein Intervall und [mm]\ f:D \to \IR[/mm] eine
> monoton wachsende (oder fallende) Funktion.

Ich geh davon aus, dass wir hier von streng monoton wachsenden/fallenden Funktionen sprechen, sonst macht das Nachfolgende ja gar keinen Sinn.

>  
> Muss [mm]\ f[/mm] stetig sein, damit [mm]\ D[/mm] auf [mm]\ D' = f(D)[/mm] bijektiv
> abgebildet wird?
> Bzw muss [mm]\ f[/mm] stetig sein, damit die
> Umkehrfunktion [mm]\ f^{-1}:D' \to D[/mm] existiert und ebenfalls
> streng monoton wachsend/fallend ist?

Nein. Streng monoton impliziert bereits injektiv, und auf $f(D)$ ist $f$ natürlich auch surjektiv. Also ist jede monotone Funktion bijektiv auf ihrem Bild.

> Kann ich also, wenn [mm]\ f[/mm] nicht zwangsläufig stetig sein
> muss, davon ausgehen, dass wenn [mm]\ f[/mm] monoton
> wachsend/fallend ist, die Umkehrfunktion [mm]\ f^{-1}[/mm] existiert
> und ebenfalls streng monoton wachsend/fallend ist?

Die Umkehrfunktion existiert auf dem Bild von $f$ und ist dort ebenfalls streng monoton wachsend/fallend!

Nur so nebenbei: monotone Funktionen sind automatisch stetig bis auf eine höchstens abzählbare Ausnahme-Menge (und damit Riemann-integrierbar auf kompakten Intervallen) und sogar Lebesgue-fast-überall differenzierbar.

Gruß, Robert

Bezug
                
Bezug
Monotone Funktion + Umkehrfkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:36 Do 11.03.2010
Autor: ChopSuey

Hallo Robert,

ja, ich meinte natürlich streng monoton wachsende/fallende Funktionen.
Vielen Dank für Deine Hinweise. Damit hätte sich alles geklärt.

Viele Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de