www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Monotones Wachstum
Monotones Wachstum < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotones Wachstum: Rückfrage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 01:05 Di 06.01.2009
Autor: dmy

Aufgabe
Sei I ein Intervall, das mehr als einen Punkt enthält, und seien [mm] \xi \in I^\circ [/mm] sowie [mm] f:I\rightarrow \mathbb{R} [/mm] eine Funktion.

Zeigen Sie, dass h: I [mm] \cap ]-\infty,\xi[ \rightarrow \mathbb{R}, x\rightarrow [/mm] h(x):= [mm] \frac{f(x)-f(\xi)}{x-\xi} [/mm] eine auf I [mm] \cap ]-\infty, \xi[ [/mm] monoton wachsende, nach oben beschränkte Funktion ist.

Irgendwo muss ich wohl einen Denkfehler haben. Denn setze ich I=[-5,6], [mm] \xi=5 [/mm] und f(x) = [mm] x^3 [/mm] so sollte h:= ]-5,5[ [mm] \rightarrow \mathbb{R}, h(x):=\frac{x^3-5^3}{x-5} [/mm] gelten.

Lasse ich diese Funktion nun in Mathematika plotten ergibt sich dass sie auf ]-5,5[ keineswegs monoton wachsend ist sondern ein lokales Minimum irgendwo zwischen -3 und -2 hat.

Wäre nett wenn mir jemand sagen könnte wo mein Denkfehler liegt...


Achja: Ich habe die Frage auf keiner anderen Internetseite gestellt!

        
Bezug
Monotones Wachstum: Vermutung zu Aufgabenstellung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:15 Di 06.01.2009
Autor: weightgainer

Die Aufgabenstellung deutet auf die linksseitige Konvergenz des Differenzenquotienten hin. Dabei verwundert mich, dass die Funktion h auf einem Intervall definiert wird, das links so weit reichen kann.

In dem Beispiel könnte man ja auch [mm] I=\IR [/mm] wählen und damit wäre h sogar auf einem nach links unbeschränkten Intervall definiert.
Die Monotonie wird es aber nur in einer Umgebung um die Stelle [mm] \xi [/mm] geben (wenn überhaupt).

Eine weitere Unklarheit offenbart das Beispiel [mm] f(x)=-x^3 [/mm] an gleicher Stelle [mm] \xi=5. [/mm] Hier ist h nämlich monoton fallend (klar, ist ja nur die Spiegelung an der x-Achse).

Nimmt man sogar eine Funktion wie [mm] f(x)=\begin{cases} 0, & \mbox{für } x \in \IQ \\ 1, & \mbox{für } x \not\in \IQ \end{cases} [/mm] an der Stelle [mm] \xi [/mm] = 0, dann findet man sicher keine Monotonie mehr, ganz unabhängig von der Wahl der Intervalle.

Fazit: Die Aufgabenstellung scheint mir nicht ganz sattelfest zu sein.

Bezug
        
Bezug
Monotones Wachstum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:55 Di 06.01.2009
Autor: dmy

Ja, hab grad bemerkt dass da etwas versteckt noch erwähnt war das f eine konvexe Funktion sein muss... Damit hat sich die Frage erledigt... Leider finde ich keine Funktion um die Frage als geklärt zu markieren...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de