www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Monotonie Grenzwerte Folgen
Monotonie Grenzwerte Folgen < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Monotonie Grenzwerte Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 So 19.10.2008
Autor: hase-hh

Aufgabe
1. Treffen Sie Aussagen zur Monotonie der Zahlenfolge [mm] a_n [/mm] = [mm] n^2 [/mm] -4n -9

2. Berechen Sie den Grenzwert der Zahlenfolge

2a.   [mm] a_n [/mm] = [mm] \bruch{6n^2 +5n +4}{3n^2 -5n -4} [/mm] + [mm] \bruch{4n}{3n^2 -5n +4} [/mm]

2b.   [mm] b_n [/mm] = [mm] e^{sin \bruch{4\pi*n^2 -\pi*n +3}{2n^2 -7}} [/mm]  

Moin,

Aufgabe 2
Hier klammere ich immer die höchste Potenz aus und bilde den Grenzwert...


2a.  

[mm] \limes_{n\rightarrow\infty} [/mm] = [mm] \bruch{n^2* (6 +\bruch{5}{n} +\bruch{4}{n^2})}{n^2*(3 -\bruch{5}{n} -\bruch{4}{n^2})} [/mm] + [mm] \bruch{n^2*(\bruch{4}{n})}{n^2*(3 -\bruch{5}{n} +\bruch{4}{n^2})} [/mm]

= 2 + [mm] \bruch{0}{3} [/mm]

2b.

[mm] \limes_{n\rightarrow\infty} [/mm] = [mm] \bruch{n^2*(4\pi -\bruch{\pi}{n} +\bruch{3}{n^2})}{n^2*(2 -\bruch{7}{n^2})} [/mm]

= [mm] 2\pi [/mm]

=>

[mm] e^{sin 2\pi} [/mm] = [mm] e^0 [/mm] = 1


Stimmt das soweit?

Wie muss ich bei Aufgabe 1 vorgehen?

Danek & Gruß








        
Bezug
Monotonie Grenzwerte Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 So 19.10.2008
Autor: schachuzipus

Hallo Wolfgang,

> 1. Treffen Sie Aussagen zur Monotonie der Zahlenfolge [mm]a_n[/mm] =
> [mm]n^2[/mm] -4n -9
>  
> 2. Berechen Sie den Grenzwert der Zahlenfolge
>  
> 2a.   [mm]a_n[/mm] = [mm]\bruch{6n^2 +5n +4}{3n^2 -5n -4}[/mm] +  [mm]\bruch{4n}{3n^2 -5n +4}[/mm]
>  
> 2b.   [mm]b_n[/mm] = [mm]e^{sin \bruch{4\pi*n^2 -\pi*n +3}{2n^2 -7}}[/mm]
> Moin,
>  
> Aufgabe 2
>  Hier klammere ich immer die höchste Potenz aus und bilde
> den Grenzwert...
>  
>
> 2a.  
>
> [mm]\limes_{n\rightarrow\infty}[/mm] = [mm]\bruch{n^2* (6 +\bruch{5}{n} +\bruch{4}{n^2})}{n^2*(3 -\bruch{5}{n} -\bruch{4}{n^2})}[/mm]  + [mm]\bruch{n^2*(\bruch{4}{n})}{n^2*(3 -\bruch{5}{n} +\bruch{4}{n^2})}[/mm]
>  
> = 2 + [mm]\bruch{0}{3}[/mm] [ok]
>  
> 2b.
>
> [mm]\limes_{n\rightarrow\infty}[/mm] = [mm]\bruch{n^2*(4\pi -\bruch{\pi}{n} +\bruch{3}{n^2})}{n^2*(2 -\bruch{7}{n^2})}[/mm]
>  
> = [mm]2\pi[/mm]
>  
> =>
>
> [mm]e^{sin 2\pi}[/mm] = [mm]e^0[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

= 1 [ok]

>  
>
> Stimmt das soweit?

Ja, seht gut soweit!

>
> Wie muss ich bei Aufgabe 1 vorgehen?

Du kannst schauen, ob $\frac{a_{n+1}}{a_n}>1\Rightarrow a_n$ (streng) monoton steigend oder $<1\Rightarrow a_n$ (streng) monoton fallend ist, bzw. gleichbedeutend $a_{n+1}>a_n$ bzw. $a_{n+1}<a_n$, also $a_{n+1}-a_n>0$ oder $a_{n+1}-a_n}<0$

Ich würde den letzteren Ansatz empfehlen, schaue dir also mal $a_{n+1}-a_n$ an und schaue, ob das > oder < 0 ist


>  
> Danek & Gruß


LG

schachuzipus


Bezug
        
Bezug
Monotonie Grenzwerte Folgen: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 15:18 So 19.10.2008
Autor: Loddar

Hallo Wolfgang!


Forme hier mal um wie folgt:
[mm] $$a_n [/mm] \ = \ [mm] n^2-4n-9 [/mm] \ = \ [mm] n^2-4n+4-13 [/mm] \ = \ [mm] (n-2)^2-13$$ [/mm]
Bei dem Graph einer analogen Funktion $f(x) \ = \ [mm] (x-2)^2-13$ [/mm] handelt es sich um eine nach oben geöffnete Parabel mit dem Scheitelpunkt $S \ [mm] \left( \ 2 \ | \ -13 \ \right)$ [/mm] .
Und bei einer derartigen Parabel ist die Funktion rechtsseitig des Scheitelpunktes streng monoton wachsend.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de