www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Münze werfen-99%,irgendwann W
Münze werfen-99%,irgendwann W < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Münze werfen-99%,irgendwann W: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Do 16.03.2006
Autor: Phoney

Aufgabe
Wie oft muss man eine Münze werfen, um mit einer Wahrscheinlichkeit von 99% oder mehr  mindestens einmal Wappen zu erhalten?

Hallo.
Ich glaube, diese Aufgabe habe ich hier schon einmal im Forum gelesen. Habe aber nichts mit der Suche gefunden.
Wie löse ich diese Aufgabe denn "zielgerichtet"?
Die Wahrscheinlichkeit, dass beim einmaligen WErfen wappen erscheint ist
p= 0,5
dass bei zwei mal werfen einmal Wappen erscheint ist

p= 0,5 + [mm] 0,5^2 [/mm]

und so kann man das ja weiter machen

p= 0,5 + [mm] 0,5^2 [/mm] + [mm] 0,5^3 [/mm]

p= 0,5 + [mm] 0,5^2 [/mm] + [mm] 0,5^3 [/mm] + [mm] 0,5^4 [/mm]

Bis man dann bei 99% ist.

Und zielgerichtet? Gibts da einen Trick?

Danke!



        
Bezug
Münze werfen-99%,irgendwann W: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Do 16.03.2006
Autor: Astrid

Hallo Phoney,

am besten ist, du schaust dir das Gegenereignis an:

Die Wahrscheinlichkeit, dass bei [mm]n[/mm] Würfen mindestens einmal Wappen erscheint, soll mindestens 99% sein. Das bedeutet doch, dass die Wahrscheinlichkeit, dass bei [mm]n[/mm] Würfen keinmal Wappen erscheint, höchsten 1% sein soll.

Mathematisch:

Nennen wir [mm]X[/mm] die Anzahl der Wappen bei [mm]n[/mm] Würfen. Dann:

[mm]P(X\geq 1)\geq 0,99[/mm]
[mm]\Leftrightarrow[/mm]   [mm]1-P(X=0)\geq 0,99[/mm]
[mm]\Leftrightarrow[/mm]   [mm]P(X=0)\leq 0,01[/mm]


Nun gibt es aber nur einen Pfad für "kein Wappen wird geworfen". Also gilt:

[mm]P(X=0)=0,5^n[/mm]

Nun kannst du [mm]n[/mm] einfach berechnen! :-)

Viele Grüße
Astrid

Bezug
                
Bezug
Münze werfen-99%,irgendwann W: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Do 16.03.2006
Autor: Phoney

Hallo Astrid.

> am besten ist, du schaust dir das Gegenereignis an:
>  
> Die Wahrscheinlichkeit, dass bei [mm]n[/mm] Würfen mindestens einmal
> Wappen erscheint, soll mindestens 99% sein. Das bedeutet
> doch, dass die Wahrscheinlichkeit, dass bei [mm]n[/mm] Würfen
> keinmal Wappen erscheint, höchsten 1% sein soll.
>
> Mathematisch:
>  
> Nennen wir [mm]X[/mm] die Anzahl der Wappen bei [mm]n[/mm] Würfen. Dann:
>  
> [mm]P(X\geq 1)\geq 0,99[/mm]
>  [mm]\Leftrightarrow[/mm]   [mm]1-P(X=0)\geq 0,99[/mm]
>  
> [mm]\Leftrightarrow[/mm]   [mm]P(X=0)\leq 0,01[/mm]
>  
>
> Nun gibt es aber nur einen Pfad für "kein Wappen wird
> geworfen". Also gilt:
>  
> [mm]P(X=0)=0,5^n[/mm]
>  
> Nun kannst du [mm]n[/mm] einfach berechnen! :-)
>  

Schön, dann ist die Rechnung [mm] 0,5^n \leq0,1 [/mm] und somit n ungefähr gleich 7?
Vielen dank!

Gruß

Bezug
                        
Bezug
Münze werfen-99%,irgendwann W: Tippfehler?
Status: (Antwort) fertig Status 
Datum: 20:05 Do 16.03.2006
Autor: Loddar

Hallo Phoney!


> Schön, dann ist die Rechnung [mm]0,5^n \leq0,1[/mm]

[notok] Tippfehler? [mm] $0.5^n [/mm] \ [mm] \le [/mm] \ [mm] 0.\red{0}1$ [/mm]



> und somit n ungefähr gleich 7?

[ok] Das stimmt dann wieder ...


Gruß
Loddar


Bezug
                                
Bezug
Münze werfen-99%,irgendwann W: Ungleichung
Status: (Frage) beantwortet Status 
Datum: 20:11 Do 16.03.2006
Autor: Phoney

Danke Loddar. war ein Tippfehler

Warum ist es eigentlich

$ [mm] 0.5^n [/mm] \ [mm] \le [/mm] \ 0,01 $ und nicht
$ [mm] 0.5^n [/mm] \  [mm] \ge [/mm] \ 0,01 $

?
Also mit diesen Ungleichungszeichen komme ich auch nicht klar...

Grüße Phoney

Bezug
                                        
Bezug
Münze werfen-99%,irgendwann W: Bestimmungsgleichung
Status: (Antwort) fertig Status 
Datum: 20:16 Do 16.03.2006
Autor: Loddar

Hallo Phoney!


Laut Aufgabenstellung suchen wir ja eine Wahrscheinlichkeit mit mindestens (also: größer-gleich) 99%.


Und mit der Bestimmungsgleichung wird dann:

[mm] $1-0.5^n [/mm] \ [mm] \red{\ge} [/mm] \ 0.99$

Umgestellt ergibt sich dann die o.g. Ungleichung!


Gruß
Loddar


Bezug
                                                
Bezug
Münze werfen-99%,irgendwann W: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:18 Do 16.03.2006
Autor: Phoney

Hallo.
>  
>
> Laut Aufgabenstellung suchen wir ja eine Wahrscheinlichkeit
> mit mindestens (also: größer-gleich) 99%.
>  
>
> Und mit der Bestimmungsgleichung wird dann:
>  
> [mm]1-0.5^n \ \red{\ge} \ 0.99[/mm]
>  
> Umgestellt ergibt sich dann die o.g. Ungleichung!
>  

Okay, super!
Dankeschööön

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de