www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Münzenwerfen
Münzenwerfen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Münzenwerfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Mo 26.05.2008
Autor: fraiser

Aufgabe
Siehe Bild, Aufgabe 4:
[Dateianhang nicht öffentlich]

Zu 4.
a)Spiel 1: E(x)= [mm] (0,5)^3*2+(0,5)^2*1+(0,5)*(-1)+(0,5)*(-3)=-1,5 [/mm]
Spiel 2: E(x)= [mm] (0,5)^3*4+(0,5)^3*4+(0,5)^2*0+(0,5)*(-3)=-0,5 [/mm]
Richtig?

b) Wie geht das? Bitte Formel mit einer kleinen Erklärung, da Wikipedia und mein Mathebuch mir das nicht vermitteln können.

c)Nach meinen Ergebnissen von a) für das Spiel 2.
Richtig?

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Münzenwerfen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:50 Mo 26.05.2008
Autor: Martinius

Hallo,

zu a)

ich würde die durchschnittliche Gewinnerwartung mit einer Binomialverteilung beschreiben:

Spiel 1 :

${3 [mm] \choose 3}*\left(\bruch{1}{2}\right)^3*\left(\bruch{1}{2}\right)^0*5+{3 \choose 2}*\left(\bruch{1}{2}\right)^2*\left(\bruch{1}{2}\right)^1*4+{3 \choose 1}*\left(\bruch{1}{2}\right)^1*\left(\bruch{1}{2}\right)^2*2-3=-12,5ct$ [/mm]

Spiel 2:

${3 [mm] \choose 3}*\left(\bruch{1}{2}\right)^3*\left(\bruch{1}{2}\right)^0*7+{3 \choose 0}*\left(\bruch{1}{2}\right)^0*\left(\bruch{1}{2}\right)^3*7+{3 \choose 2}*\left(\bruch{1}{2}\right)^2*\left(\bruch{1}{2}\right)^1*3-3=-12,5ct$ [/mm]


zu b)

Hier bin ich mir nicht sicher, aber ich meine, die Standardabweichung wäre

[mm] $\sigma [/mm] = [mm] \wurzel{n*p*(1-p)}=\wurzel{\bruch{3}{4}}\approx [/mm] 0,8660$

Sie beschreibt die durchschnittliche Abweichung der Zufallsvariablen X vom Mittelwert [mm] \mu [/mm]

[mm] $\mu [/mm] = n*p = 1,5$

also  0,634 [mm] \le \mu \le [/mm] 2,366


zu c)

Hier bin ich mir auch nicht sicher, aber da die Kombination 1 mal Kopf und 2 mal Kopf am häufigsten auftritt, und je mit gleicher Wahrscheinlichkeit, ergäbe sich bei Spiel 1 eine durchschnittliche Auszahlung von 3 Euro und bei Spiel 2 eine durchschnittliche Auszahlung von 1,5 Euro wenn man innerhalb des Intervalls bleibt, das die Standardabweichung um den Mittelwert zieht.
Also würde ich mich für Spiel 1 entscheiden - wenn ich eines von beiden nehmen müsste.

Da man auf Dauer aber bei beiden den gleichen Verlust macht, wäre es am vernünftigsten gar nicht zu spielen.

LG, Martinius  

Bezug
        
Bezug
Münzenwerfen: Antwort
Status: (Antwort) fertig Status 
Datum: 05:10 Di 27.05.2008
Autor: Fulla

Hallo fraiser,

Wenn 3 Münzen geworfen werden, gibt es 8 verschiedene Ausgänge:
KKK   ZZZ
KKZ   ZZK
KZK   ZKZ
ZKK   KZZ

zu a)
Hier sollst du den Erwartungswert von X (Gewinn des Spielers) berechnen. Du hast leider die falschen Wahrscheinlichkeiten benutzt...
Der Erwartungswert ist ja [mm] $E(X)=\sum_i x_i*p(x_i)$. [/mm] Also
[mm] $E(X_1)=2*\frac{1}{8}+1*\frac{3}{8}+(-1)*\frac{3}{8}+(-3)*\frac{1}{8}=-\frac{1}{8}=-0,125$ [/mm]

[mm] $E(X_2)=4*\frac{1}{8}+4*\frac{1}{8}+0*\frac{3}{8}+(-3)*\frac{3}{8}=-\frac{1}{8}=-0,125$ [/mm]

Das sagt uns, dass beide Spiele gleich schlecht sind: wenn man lange genung spielt (undendlich oft), verliert man im Schnitt bei beiden Varianten pro spiel 12,5 cent.

zu b)
Die Standardabweichung ist definiert als Wurzel der Varianz, also [mm] $\sigma (X)=\sqrt{\mbox{var}(X)}$. [/mm] Und die Varianz ist [mm] $\mbox{var}(X)=E(X^2)-(E(X))^2$. [/mm] (Es gibt noch andere Formeln, aber diese ist wohl am leichtesten zu berechnen.) Wir müssen also noch [mm] $E(X^2)$ [/mm] berechnen:
[mm] $E(X_1^2)=2^2*\frac{1}{8}+1^2*\frac{3}{8}+(-1)^2*\frac{3}{8}+(-3)*\frac{3}{8}=\frac{19}{8}$ [/mm]

[mm] $E(X^2_2)=4^2*\frac{1}{8}+4^2*\frac{1}{8}+0^2*\frac{3}{8}+(-3)^2*\frac{3}{8}=\frac{59}{8}$ [/mm]

Jetzt ist [mm] $\sigma (X_1)=\sqrt{E(X_1^2)-(E(X_2))^2}=\sqrt{\frac{19}{8}-\left(-\frac{1}{8}\right)^2}\approx [/mm] 1,54$

[mm] $\sigma (X_2)=\sqrt{\frac{59}{8}-\left(\frac{1}{8}\right)^2}\approx [/mm] 2,72$

Die Standardabweichung ist ein Maß dafür, wie weit die einzelnen Werte typischerweise vom Erwartungswert abweichen. Bei Spiel 2 ist das mehr, als bei Spiel 1.

zu c)
hmmm... Bei beiden Spielvarianten verliert man im Schnitt 12,5 cent. Bei Spiel 2 ist das Risiko (und der Spaß?) größer, denn man kann mehr gewinnen, aber auch mehr verlieren. Beim ersten Spiel gewinnt und verliert man eben weniger.
Das gilt allerdings nur, wenn man nicht oft spielt... Wenn man sehr oft spielt, verliert man bei beiden Varianten gleich viel (siehe a)


Ich hoffe, ich konnte dir weiterhelfen. Lieben Gruß,
Fulla

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de