www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Multinomialkoeffizient?
Multinomialkoeffizient? < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multinomialkoeffizient?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Fr 04.01.2013
Autor: bandchef

Aufgabe
20 Stimmen werden zufällig auf 3 Kandidaten verteilt. Wie groß ist die Wahrscheinlichkeit, dass der Kandidat A 10 Stimmen und die Kandidaten B und C jeweils 5 Stimmen erhalten?

Hi Leute!

Ich möchte nun diese Aufgabe lösen. Ich weiß, dass ich hier irgendwie mit Variationen und dem Multinomialkoeffizienten arbeiten muss. Aber wie immer die selbe Frage: Wie komm ich drauf?

        
Bezug
Multinomialkoeffizient?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Fr 04.01.2013
Autor: HJKweseleit

Stelle dir vor, es werden 20 nummerierte Zettel ausgelegt, und jemand soll auf jeden Zettel A, B oder C schreiben.

Für den 1. Zettel hat er 3 Mgl., für den 2. usw.
Es gibt somit [mm] 3^{20} [/mm] Mgl., die Zettel auszufüllen.

Nun soll er genau 10 davon mit A ausfüllen. Die sucht er sich aus. Dafür gibt es [mm] \pmat{ 20 \\ 10} [/mm] Mgl. Die beschriftet er mit A. von den nächsten 10 sucht er sich 5 für B aus. Dafür gibt es [mm] \pmat{ 10 \\ 5} [/mm] Mgl. Die beschriftet er mit B. Für die restlichen 5 gibt es nur eine Mgl. (=Rest), die beschriftet er mit C.

Somit gibt es [mm] \pmat{ 20 \\ 10}*\pmat{ 10 \\ 5} [/mm] Mgl. zum gewünschten Ausfüllen, [mm] 3^{20} [/mm] Mgl. überhaupt. Somit ist

[mm] p=\bruch{\pmat{ 20 \\ 10}*\pmat{ 10 \\ 5} }{3^{20}}. [/mm]

Dass tatsächlich die Reihenfolge keine Rolle spielt, ändert nichts am Ergebnis. Die Berechnung ist aber mit Reihenfolge einfacher.

Bezug
        
Bezug
Multinomialkoeffizient?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:57 Fr 04.01.2013
Autor: luis52

Moin,

ich moechte  HJKweseleits Loesung noch auf eine andere Weise bestaetigen: Betrachte eine Urne mit $N_$ Kugeln, wovon [mm] $N_j$ [/mm] die Farbe [mm] $F_j$ [/mm] haben, [mm] $N_1+\dots+N_k=N$. [/mm] Aus der Urne werden $n$ Kugeln mit Zuruecklegen gezogen. Es bezeichne [mm] $X_j$ [/mm] die Anzahl der Kugeln der Farbe [mm] $F_j$. [/mm] Dann gilt

[mm] $P(X_1=x_1,\dots,X_k=x_k)=\frac{n!}{x_1!x_2!\cdot\ldots\cdot x_k!}p_1^{x_1}p_2^{x_2}\cdot\ldots\cdot p_k^{x_k}$ [/mm]

mit [mm] $p_j=N_j/N$ [/mm] (Multinomialverteilung).

In deinem Fall besteht die Urne aus drei Kugel mit den Farben A,B,C, aus der $n=20$ Kugeln m.Z. gezogen werden. Dann ist

[mm] $P(X_A=20,X_B=5,X_C=5)=\frac{20!}{10!5!5!}(\frac{1}{3})^{10}(\frac{1}{3})^{5}(\frac{1}{3})^{5}$. [/mm]

vg Luis



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de