www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Multiplikation injektiv
Multiplikation injektiv < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multiplikation injektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 So 03.10.2010
Autor: Salamence

Aufgabe
Sei [mm] n\in \IN [/mm] und sei [mm] m\in \IZ. [/mm]

[mm] f_{m}^{n}: \IZ/n\IZ \to \IZ/n\IZ [/mm]
[mm] a+n\IZ \mapsto m*a+n\IZ [/mm]

a) Zeige, dass die vorliegende Abbildung für m=2 und n=3 injektiv ist.
b) Finde [mm] n\in \IN [/mm] und [mm] 0\not=m\not=n, [/mm] sodass die Abbildung nicht injektiv ist.
c) Zeige: Sei n prim und [mm] m\notin n\IZ. [/mm] Dann ist die Abbildung injektiv.
d) Finde allgemeine Bedingungen für Injektivität.

Heyho!

a) und b) sind ja nicht der Rede wert...
Aber wie zeige ich c)?
[mm] f_{m}^{n}(a+n\IZ)=f_{m}^{n}(b+n\IZ) [/mm]
[mm] \gdw m*a\equiv [/mm] m*b mod n
[mm] \gdw \exists k\in \IZ: [/mm] m*b=m*a+k*n

Wo kann man da die Voraussetzungen verwenden?

Und wie ist das bei d)? Raten würd ich ja: [mm] m\not=0 [/mm] und ggT(m,n)=1
(Scheint zumindest für einige Beispiele hinzuhauen)
Doch wie ich das beweisen sollte, weiß ich nun nicht.



        
Bezug
Multiplikation injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 So 03.10.2010
Autor: felixf

Moin!

> Sei [mm]n\in \IN[/mm] und sei [mm]m\in \IZ.[/mm]
>
> [mm]f_{m}^{n}: \IZ/n\IZ \to \IZ/n\IZ[/mm]
>  [mm]a+n\IZ \mapsto m*a+n\IZ[/mm]
>  
> a) Zeige, dass die vorliegende Abbildung für m=2 und n=3
> injektiv ist.
>  b) Finde [mm]n\in \IN[/mm] und [mm]0\not=m\not=n,[/mm] sodass die Abbildung
> nicht injektiv ist.
>  c) Zeige: Sei n prim und [mm]m\notin n\IZ.[/mm] Dann ist die
> Abbildung injektiv.
>  d) Finde allgemeine Bedingungen für Injektivität.
>  Heyho!
>  
> a) und b) sind ja nicht der Rede wert...

Schoen :)

>  Aber wie zeige ich c)?
> [mm]f_{m}^{n}(a+n\IZ)=f_{m}^{n}(b+n\IZ)[/mm]
>  [mm]\gdw m*a\equiv[/mm] m*b mod n
>  [mm]\gdw \exists k\in \IZ:[/mm] m*b=m*a+k*n

Wenn zwei Zahlen $x$ und $y$ teilerfremd sind, dann gibt es $x', y' [mm] \in \IZ$ [/mm] mit $x x' + y y' = 1$ (so eine Gleichung nennt sich Bezout-Gleichung). Das ist uebrigens aequivalent dazu, dass $x'$ das Inverse von $x$ modulo $y$ ist: es gilt $x x' [mm] \equiv [/mm] 1 [mm] \pmod{y}$. [/mm]

Bei dieser Aufgabe hilft dir eine Bezout-Gleichung fuer $m$ und $n$ weiter (beachte, dass sie teilerfremd sind).

> Wo kann man da die Voraussetzungen verwenden?
>  
> Und wie ist das bei d)? Raten würd ich ja: [mm]m\not=0[/mm] und
> ggT(m,n)=1

Aus $ggT(m, n) = 1$ folt schon $m [mm] \neq [/mm] 0$. (Ausser fuer $n = 1$, aber dann darf $m$ auch 0 sein.)

>  (Scheint zumindest für einige Beispiele hinzuhauen)
>  Doch wie ich das beweisen sollte, weiß ich nun nicht.

Genauso wie bei b), mit Hilfe einer Bezout-Gleichung :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de