www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Multivariate Statistik: Matrix
Multivariate Statistik: Matrix < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multivariate Statistik: Matrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 01:03 Mo 02.07.2007
Autor: Schnepfi

Aufgabe
Seien [mm] $X_1,\ldots,X_n$ [/mm] unabhängige, identisch multivariat normalverteilte  n-dimensionale Zufallsvektoren
mit Erwartungswert [mm] $\mu$ [/mm] und Kovarianzmatrix [mm] $\Sigma$, [/mm] d.h.
$ [mm] X_i\sim N(\mu,\Sigma)$. [/mm]

Konstruieren sie eine Matrix [mm] $\Sigma^{-1/2}$ [/mm] mit der Eigenschaft [mm] $\Sigma^{-1/2}(\Sigma^{-1/2})^T =\Sigma^{-1}$. [/mm]

Hallo,

Leider habe ich  nicht mehr Infos als die Aufagebstellung, daher weiß ich nicht wie ich an dir Aufgabe rangehen soll.
Ist mit [mm] $\Sigma^{-1/2}$ [/mm] die Wurzel einer Matrix gemeint oder hat das hier eine andere Bedeutung? Wäre wirklich sehr nett, wenn mir jemand auf die Sprünge helfen könnte.
Vielen Dank

Ich habe diese Frage auf keinen anderen Seiten/Foren gestellt

        
Bezug
Multivariate Statistik: Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 09:10 Mo 02.07.2007
Autor: luis52

Moin Schnepfi,

was meinst du mit "Wurzel"?  Der Begriff macht durchaus Sinn.  Im
allgemeinen ist [mm] $\Sigma$ [/mm] symmetrisch und positiv definit, so dass die
sog.  Spektraldarstellung gilt:  [mm] $\Sigma=P\Lambda P^T$, [/mm] siehe beispielsweise Satz 5.3.4 hier:

[]http://www.math.uni-leipzig.de/MI/riedel/mathgeol/geosk/node24.html

Darin ist [mm] $\Lambda$ [/mm] die Diaganonalmatrix der Eigenwerte [mm] $\lambda_i>0$ [/mm] von [mm] $\Sigma$ [/mm] und $P$ ist eine orthogonale Matrix (mit $P^TP=I$), deren Spalten [mm] $p_i$ [/mm] zugehoerige Eigenvektoren sind, d.h., es gilt [mm] $\Sigma p_i=\lambda_i p_i$. [/mm]  Definiere jetzt  [mm] $\Sigma^{1/2}:=P\Lambda^{1/2}P^T$, [/mm] worin [mm] $\Lambda^{1/2}$ [/mm] die Diagonalmatrix mit den Werten [mm] $\lambda_i^{1/2}=\sqrt{\lambda_i}$ [/mm] ist und [mm] $\Sigma^{-1/2}:=P\Lambda^{-1/2}P^T$, [/mm] worin [mm] $\Lambda^{-1/2}$ [/mm] die Diagonalmatrix mit den Werten [mm] $\lambda_i^{-1/2}=1/\sqrt{\lambda_i}$ [/mm] ist. Dann gilt offenbar die Darstellung $ [mm] \Sigma^{-1/2}(\Sigma^{-1/2})^T =\Sigma^{-1} [/mm] $.

lg

Luis          

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de