www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - N-te Wurzel
N-te Wurzel < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

N-te Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Fr 05.04.2019
Autor: Trikolon

Hallo,

eine kurze Frage: weshalb ist denn die n-te Wurzel nur für positive Radikanten definiert? Es ist doch z.B [mm] (-3)^3=-27. [/mm] Weshalb ist dann dir 3. Wurzel aus -27 nicht definiert ?

        
Bezug
N-te Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Fr 05.04.2019
Autor: hase-hh


> Hallo,
>  
> eine kurze Frage: weshalb ist denn die n-te Wurzel nur für
> positive Radikanten definiert?

Du meinst Radikanden, aber ok.

>  Es ist doch z.B [mm](-3)^3=-27.[/mm]
> Weshalb ist dann dir 3. Wurzel aus -27 nicht definiert ?

Äh, das ist so nicht ganz richtig. slebstverständlich ist die 3. 5. 7. Wurzel usf.

auch für negativer Zahlen erklärt. Schon dein Taschenrechner wird kein Problem haben, bleistiftsweise die [mm] \wurzel[3]{-27} [/mm] zu ziehen, nämlich -3.

Warum ist das so:  Weil (-3)*(-3)*(-3) = -27 ist.

Hingegen ist natürlich die 2. 4. 6. Wurzel usf. nicht definiert für negative Zahlen  --- selbstverständlich setze ich hier den Bereich der reellen Zahlen voraus ---

Weil [mm] \wurzel[2]{-4} [/mm]  geht nicht da,

weder 2*2 = -4   noch  (-2)*(-2) = -4.




Bezug
        
Bezug
N-te Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Fr 05.04.2019
Autor: chrisno

https://de.wikipedia.org/wiki/Wurzel_(Mathematik)#Wurzeln_aus_negativen_Zahlen

Da steht es gut beschrieben, finde ich.

Bezug
                
Bezug
N-te Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:28 So 07.04.2019
Autor: Trikolon

Dann frage ich mich aber weshalb in sämtlichen Definitionen immer steht die n-te Wurzel aus einer NICHTNEGATIVEN Zahl ist... Übrigens auch in meinem Schulbuch.

Bezug
                        
Bezug
N-te Wurzel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 So 07.04.2019
Autor: Eisfisch

Was bedeuten bei dir die drei Punkte ... ?  Ich kann mit denen nix anfangen & hab hier kein Schulbuch .

Bezug
                        
Bezug
N-te Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 So 07.04.2019
Autor: chrisno

So richtig klar ist nun Deine Frage nicht. Ist es die Wiederholung der Anfangsfrage?
Dazu die Antwort lautet: Weil es swich nicht lohnt, immer die Spezialfälle aufzuführen. Dann lässt man sie einfach weg und behält im Hinterkopf, dass es bestimmte Situationen gibt, in denen es eine Antwort im Reellen gibt, wenn eine Zahl gesucht wird, deren dritte Potenz eine negative Zahl ergibt.

Bezug
                        
Bezug
N-te Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 01:05 Mo 08.04.2019
Autor: Eisfisch


> Dann frage ich mich aber weshalb in sämtlichen
> Definitionen immer steht die n-te Wurzel aus einer
> NICHTNEGATIVEN Zahl ist... Übrigens auch in meinem
> Schulbuch.

Aha, ich glaub, ich habes kapiert. Wir hatten nämlich das Probölem neulich.
Du meinst bestimmt so etwas wie (leichter Standardfall):

[mm] \wurzel{4} [/mm] = 2

und es heißt nie oder nicht oder sehr selten:

[mm] \wurzel{4} [/mm] = [mm] \pm [/mm] 2


Wir sind bei der pq-Formel darauf gekommen. Dort heißt es ja:

x(1) = - p/2 + [mm] \wurzel{ (p/2)^{2} - q } [/mm]
und
x(2) = - p/2 - [mm] \wurzel{ (p/2)^{2} - q } [/mm]

Warum eigentlich? Naja,, weil aus der Wurzel einmal eine positive und einmal eine negative Zahl herauskommt.

Warum das bei der Wurzel so ist, dass eine nag.Zahl (meistens) nicht dasteht? Keine Ahnung.
Das wurde den Schülern* vorenthalten, nicht gesagt, nicht erklärt.

Nachdem wir das mit der +/- Wurzel geklärt hatten, war auch die pq-Formel  erklärt.

Das wird den Schülerinnen* vorenthalten, weil man sie nicht verwirren will?
Weil man sie für doof hält?

Andersrum ist es klar: bei der quadrat.Funktion, der Parabel wird ganz klar damit jongliert, dass 2x2=4  und (-2)x(-2)=4 sind.

Das finde ich auch in meinem "Handbuch der Mathe."(1972)p.54f.
Dort wird einfach definiert: Die n-te Wurzel a aus der nicht negativen reellen Zahl b ist die nicht negative reele Zahl a, deren n-te Potenz den Wert b hat.  
Also gibt es demnach nur [mm] \wurzel{4} [/mm] = 2

Die restl.Erklärungen erscheinen mir Alibi-Formulierungen, denn es wird dann formuliert: "Die zwei Lösungen der Gleichung [mm] x^{n}=b [/mm] für gerade n müssen deshalb (WEIL s.u.) durch das Vorzeichen der Wurzel unterschieden werden."  
WEIL am Beispiel "hoch 2" gezeigt wurde, dass die Basis (x) einmal positives und einmal negatives Vorzeichen besitzt. Ja,toll!


Ich kann deine Klage verstehen
und schließe mir dir/ihr an!







Bezug
                                
Bezug
N-te Wurzel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:43 Mo 08.04.2019
Autor: chrisno

Ich bezweifle, dass Du damit auf die Frage von Trikiolon eingegangen bist. Es geht, nach meinem Verständnis, nicht darum, dass das Ergebnis der Wurzelziehens eine positive Zahl ergibt.
Weil es praktisch ist, wird definiert (festgelegt), dass das Wurzelziehen eine Abbildung von den nichtnegativen  Zahlen in die nichtnegativen Zahlen ist. Man kann natürlich beschließen, dass man das anders handhaben will. Kommunikationsprobleme muss man dann in Kauf nehmen.
Etwas anderes ist, sich Gedanken zu machen, welche Zahlen eine bestimmte Gleichung lösen. Da muss man darauf achten, dass man alle Fälle möglicher Vorzeichen erfasst.

Kurz, die Wurzelfunktion ist ein Hilfsmittel zum Lösen von Gleichungen, nicht die vollständige Lösung.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de