www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - {NAND} ist vollst. Junkt-Menge
{NAND} ist vollst. Junkt-Menge < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

{NAND} ist vollst. Junkt-Menge: Idee, Korrektur
Status: (Frage) überfällig Status 
Datum: 18:21 Mo 06.05.2013
Autor: Argot

Aufgabe
Nehmen Sie an, wir hätten den Junktor ⊼ (NAND), so dass für Formeln A,B Belegungen [mm] \phi [/mm] gilt: [mm] \phi(A [/mm] ⊼ B) = 1 - [mm] min\{\phi(A),\phi(B)\} [/mm] . Zeigen Sie mittels struktureller Induktion, dass die Menge  [mm] \{NAND\} [/mm] eine vollständige Junktorenmenge ist.

Hallo matheraum.de!

Ich habe bei der angegebenen Aufgabe Startschwierigkeiten. Zur Zeit existieren zwei grobe Ideen, mit welchen ich aber nicht weiterkomme. Das Ziel ist eine strukturelle Induktion.

Frage Liege ich vollständig falsch oder ist einer der beiden Ansätze eine Grundlage für den gesuchten Beweis? Wie kann ich von den bekannten Formeln A,B auf unbekannte Formeln schließen, dass diese Äquivalente haben in [mm] F(\{NAND\})? [/mm] Ist der zweite Ansatz zw. [mm] \phi(A [/mm] NAND A) überhaupt relevant für den Beweis?



Hilfs-Def. NAND Hier wird nun NAND statt ⊼ verwendet, da dieses Zeichen sich nicht immer darstellen lässt (bestimmt nutze ich es nur falsch).

Nun zu den bekannten Definitionen:

Def. F(M) Für eine Menge M von Junktoren sei F(M) die Menge der Formeln, in denen als Junktoren nur solche aus M vorkommen.

Def. Vollständiger Junktor Eine Menge M von Junktoren, heißt vollständig, wenn es für jede Formel A eine äquivalente Formel B [mm] \in [/mm] F(M) gibt.



Konzept/Ziel Gezeigt werden soll, dass man nur mit NANDs (wie in der Elektronik) jede andere logische Formel nachbilden kann. Hierfür muss dann mit der Definition der vollständigen Junktoren gearbeitet werden. Die Definition habe ich soweit verstanden.

Ansatz 1 (IA) Seien Formeln A,B beide aus der Formelmenge [mm] F(\{NAND\}) [/mm] und äquivalent (oder stärker: A [mm] \in F(\{NAND\}) [/mm] mit A = B).
Für A ist [mm] \{NAND\} [/mm] eine vollständige Junktorenmenge, da es eine äquivalente Formel B [mm] \in F(\{NAND\}) [/mm] gibt.

(IV) Es existiert eine Formel A, welche ein Äquivalent B in der Formelmenge [mm] F(\{NAND\}) [/mm] hat.

(IS) Hier komme ich nicht weiter, da ein weiteres A nicht in [mm] F(\{NAND\}) [/mm] sein muss und ich den Weg zu einem Element in dieser Menge nicht sehe.
Daher kann ich keine Brücke schlagen um diesen Ansatz weiterzuführen.

Ansatz 2 (IA) Seien Formeln A,B [mm] \in F(\{NAND\}) [/mm] und A=B (insb. äquivalent).
Dann ist  [mm] \phi(A [/mm] NAND B) = 1 - [mm] min\{\phi(A),\phi(B)\} [/mm] kürzbar durch die Äquivalenz bzw. Gleichheit A=B zu: [mm] \phi(A [/mm] NAND A) = 1 - [mm] min\{\phi(A),\phi(A)\} [/mm] = 1 - [mm] \phi(A). [/mm] Das Ergebnis von [mm] \phi(A [/mm] NAND A) ist nun immer [mm] \neg [/mm] A.



Vielen Dank für das Lesen!

        
Bezug
{NAND} ist vollst. Junkt-Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Mo 06.05.2013
Autor: Teufel

Hi!

Ich habe nicht so viel Ahnung von struktureller Induktion, aber ich würde das einfach so zeigen, dass man AND und NOT mit NANDS nachbauen kann. Denn jede boolsche Formel kann man mit AND, NOT und OR beschreiben. Habt ihr das mal gezeigt? OR kann man schon durch AND und NOT darstellen (a OR b = NOT ((NOT A) AND (NOT B))) und den Rest musst du dann noch zeigen.

Bezug
                
Bezug
{NAND} ist vollst. Junkt-Menge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 06.05.2013
Autor: Argot

Danke für die Antwort.

Das ist eine gute Idee, aber bestimmt nicht die gewünschte Lösung. Gezeigt wurde das in dieser Vorlesung nicht (aber in einer anderen, welche aber keine Grundlage für die Vorlesung darstellt). Bis jetzt waren alle Aufgaben und Lösungen nur theoretischer Natur.

Es gibt bestimmt einen Trick, welchen man mit den Definitionen anstellen kann.

Bezug
        
Bezug
{NAND} ist vollst. Junkt-Menge: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 14.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de