www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - NST
NST < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

NST: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Do 04.12.2008
Autor: Englein89

Hallo,

ich knoble gerade an diesem Polynom:

[mm] p(x)=x^5-2x^4-2x^2+2, [/mm] dafür soll ich nämlich Nullstellen finden, bzw beweisen, dass das Polynom min. 3 versch. NST hat.

Wie gehe ich dabei vor? Polynomdivision, Ausklammern und Substituieren fallen ja als Methode weg.

Als Hinweis wurde uns gegeben: p(-1),p(0), p(1) und p(10) zu berechnen, aber was bringen mir die Ergebnisse? Ich bekomme da-3, 2, -1, 79802 heraus.

Danke für den Tipp!

        
Bezug
NST: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Do 04.12.2008
Autor: MathePower

Hallo Englein89,

> Hallo,
>  
> ich knoble gerade an diesem Polynom:
>  
> [mm]p(x)=x^5-2x^4-2x^2+2,[/mm] dafür soll ich nämlich Nullstellen
> finden, bzw beweisen, dass das Polynom min. 3 versch. NST
> hat.
>  
> Wie gehe ich dabei vor? Polynomdivision, Ausklammern und
> Substituieren fallen ja als Methode weg.
>  
> Als Hinweis wurde uns gegeben: p(-1),p(0), p(1) und p(10)
> zu berechnen, aber was bringen mir die Ergebnisse? Ich
> bekomme da-3, 2, -1, 79802 heraus.


Das bringt Dir die Erkenntnis, daß zwischen
p(-1) und p(0) eine Nullstelle liegen muß, da p(-1)*p(0) < 0 ist.

Analog mit den anderen Funktionswerten.


>  
> Danke für den Tipp!


Gruß
MathePower

Bezug
                
Bezug
NST: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Do 04.12.2008
Autor: Englein89

Stimmt, aber reicht es zu sagen, dass die Funktion min 3 versch. NST haben muss, da es hier 4 Vorzeichenwechsel an versch stellen gibt? Zur Berechnung wüsste ich jetzt keine Möglichkeit.

Bezug
                        
Bezug
NST: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Do 04.12.2008
Autor: pelzig


> Stimmt, aber reicht es zu sagen, dass die Funktion min 3
> versch. NST haben muss, da es hier 4 Vorzeichenwechsel an
> versch stellen gibt?

Ja. Da Polynome stetig sind, kannst du nämlich den Zwischenwertsatz anwenden.

Gruß, Robert

Bezug
                                
Bezug
NST: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:47 Do 04.12.2008
Autor: Englein89

Meinst du nicht eher den Nullstellensatz von Bolzano?

Bezug
                                        
Bezug
NST: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:59 Do 04.12.2008
Autor: pelzig


> Meinst du nicht eher den Nullstellensatz von Bolzano?

Der ist äquivalent zum Zwischenwertsatz.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de