www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - NST,Extrema,Wertebereich f(x)
NST,Extrema,Wertebereich f(x) < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

NST,Extrema,Wertebereich f(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 10.03.2009
Autor: tedd

Aufgabe
Bestimmen Sie zur Funktion f(x)=sin(x)+2*cos(x)+1 die Nullstellen und Extremstellen sowie den Wertebereich.

Habe da Probleme mit den Nullstellen,
kann ich die Funktion überhaupt nach x auflösen oder muss ich die Nullstellen zum Beispiel über Newton Iteration ausrechnen?

Bei den Extremstellen, dürfte ich das selbe Problem haben...

Danke und Gruß,
tedd

        
Bezug
NST,Extrema,Wertebereich f(x): Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 Di 10.03.2009
Autor: fred97


> Bestimmen Sie zur Funktion f(x)+2*cos(x)+1 die Nullstellen
> und Extremstellen sowie den Wertebereich.
>  Habe da Probleme mit den Nullstellen,
>  kann ich die Funktion überhaupt nach x auflösen oder muss
> ich die Nullstellen zum Beispiel über Newton Iteration
> ausrechnen?


Quatsch !  Man lernt doch in der Schule schon, an welchen Punkten der Cosinus den Wert [mm] \bruch{-1}{2} [/mm] annimmt. Bemühe mal eine Formelsammlung


>  
> Bei den Extremstellen, dürfte ich das selbe Problem
> haben...


Auch Quatsch ! Was sind die Nullstellen des Sinus ?

FRED


>  
> Danke und Gruß,
>  tedd


Bezug
                
Bezug
NST,Extrema,Wertebereich f(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Di 10.03.2009
Autor: tedd

Ach verdammt!
Sorry!
Hab mich bei der Aufgabenstellung verschrieben!

Richtig müsste es heissen:

f(x)=sin(x)+2*cos(x)+1

Dein Beitrag hat mich aber trotzdem schlauer gemacht.

Einmal müssten Nullstellen auftreten, wo [mm] \cos(x)=0 [/mm] und [mm] \sin(x)=-1 [/mm] ist,

also [mm] x=3*\bruch{\pi}{2}+2*k*\pi [/mm]

aber es gibt doch sicher noch mehr Nullstellen...
Sorry nochmal für den vertipper...

Danke und gruß,
tedd

Bezug
                        
Bezug
NST,Extrema,Wertebereich f(x): Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Di 10.03.2009
Autor: abakus


> Ach verdammt!
>  Sorry!
>  Hab mich bei der Aufgabenstellung verschrieben!
>  
> Richtig müsste es heissen:
>  
> f(x)=sin(x)+2*cos(x)+1
>  
> Dein Beitrag hat mich aber trotzdem schlauer gemacht.
>  
> Einmal müssten Nullstellen auftreten, wo [mm]\cos(x)=0[/mm] und
> [mm]\sin(x)=-1[/mm] ist,
>  
> also [mm]x=3*\bruch{\pi}{2}+2*k*\pi[/mm]
>  
> aber es gibt doch sicher noch mehr Nullstellen...

Hallo, es gilt [mm] sin^{2}x=1-cos^{2}x [/mm] und damit |sin [mm] x|=\wurzel{1-cos^{2}x} [/mm]
Ersetze also damit sin x, stelle nach dieser Wurzel um und quadriere. Du erhältst eine quadratische Gleichung mit der "Variablen" cos(x).
Am Ende musst du noch eine Probe zu den möglichen Lösungen machen, weil das Quadrieren keine äquivalente Umformung ist und Scheinlösungen mit reinbringt.
Gruß Abakus

>  Sorry nochmal für den vertipper...
>  
> Danke und gruß,
>  tedd


Bezug
                                
Bezug
NST,Extrema,Wertebereich f(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:39 Di 10.03.2009
Autor: tedd

Ahh okay....

Also kann ich schreiben:

[mm] \pm\sqrt{1-\cos^2(x)}+2*\cos(x)+1=0 [/mm]

[mm] \gdw 2*\cos(x)+1=\mp\sqrt{1-cos(x)} [/mm]

[mm] \Rightarrow 4*\cos^2(x)+4*\cos(x)+1=1-\cos^2(x) [/mm]

[mm] \gdw 5*\cos^2(x)+4*\cos(x)=0 [/mm]

[mm] \gdw \cos(x)*(5*\cos(x)+4)=0 [/mm]

Also einmal
[mm] \cos(x)=0 \gdw x=\bruch{\pi}{2}+2*k*\pi [/mm]

und

[mm] \cos(x)=-\bruch{4}{5} [/mm]

[mm] \gdw x=\pm\arccos(-\bruch{4}{5})+2*k*\pi [/mm]

Die Probe (mit Taschenrechner ausgerechnet, weil [mm] arccos(-\bruch{4}{5}) [/mm] was "krummes" ergibt), dass [mm] x=-arccos(-\bruch{4}{5})+2*k*\pi [/mm] keine gültige Lösung ist....
Ebenso ist [mm] x=\bruch{\pi}{2}+2*k*\pi [/mm] keine gültige Lösung...

Also bleibt nur:

[mm] x=+arccos(-\bruch{4}{5})+2*k*\pi [/mm]
und
[mm] x=\bruch{\pi}{2}+(2*k+1)*\pi [/mm]

?

Danke und Gruß,
tedd

Bezug
                                        
Bezug
NST,Extrema,Wertebereich f(x): Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Di 10.03.2009
Autor: abakus

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                        
Bezug
NST,Extrema,Wertebereich f(x): Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Di 10.03.2009
Autor: MathePower

Hallo tedd,

> Ach verdammt!
>  Sorry!
>  Hab mich bei der Aufgabenstellung verschrieben!
>  
> Richtig müsste es heissen:
>  
> f(x)=sin(x)+2*cos(x)+1
>  
> Dein Beitrag hat mich aber trotzdem schlauer gemacht.
>  
> Einmal müssten Nullstellen auftreten, wo [mm]\cos(x)=0[/mm] und
> [mm]\sin(x)=-1[/mm] ist,
>  
> also [mm]x=3*\bruch{\pi}{2}+2*k*\pi[/mm]
>  
> aber es gibt doch sicher noch mehr Nullstellen...
>  Sorry nochmal für den vertipper...

[mm]f\left(x\right)=\sin\left(x\right)+2*\cos\left(x\right)+1[/mm] kann man noch etwas zusammnfassen:

[mm]f\left(x\right)=\sin\left(x\right)+2*\cos\left(x\right)+1=A*\sin\left(x+\varphi)+1[/mm]

Nun, wie geht das?

[mm]\sin\left(x\right)+2*\cos\left(x\right)=A*\sin\left(x+\varphi\right)[/mm]
[mm]\Rightarrow \sin\left(x\right)+2*\cos\left(x\right)=A*\sin\left(x)*\cos\left(\varphi\right)+A*\sin\left(\varphi\right)*\cos\left(x\right)[/mm]

Durch Koeffizientenvergleich erhält man

[mm]A*\cos\left(\varphi)=1[/mm]

[mm]A*\sin\left(\varphi)=2[/mm]

woraus sich [mm]\tan\left(\varphi\right)=2[/mm] und [mm]A=\wurzel{5}[/mm] ergeben.

Damit ist die Gleichung

[mm]A*\sin\left(x+\varphi\right)+1=0[/mm]

zu lösen.


>
> Danke und gruß,
>  tedd


Gruss
MathePower

Bezug
                                
Bezug
NST,Extrema,Wertebereich f(x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Do 12.03.2009
Autor: tedd

Stimmt!

Danke für die Hilfe.

Gruß,
ted

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de