www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - NST kubischer Gl. mehrerer Var
NST kubischer Gl. mehrerer Var < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

NST kubischer Gl. mehrerer Var: allgemeine Lösungsansätze
Status: (Frage) beantwortet Status 
Datum: 23:58 So 17.06.2007
Autor: Mumrel

Aufgabe
f(x,y) = [mm] x^4 [/mm] + [mm] y^4 [/mm] + [mm] 2*x^2y^2 [/mm] - [mm] 2x^2 [/mm] - [mm] 2y^2 [/mm]
Gesucht sind lokale Extrema, es tauch bei der Berechnung das Problem auf die Nusllstellen einer kubischen Gleichung(en) mehrere Variable zu lösen.

1) := [mm] \frac{\partial f}{\partial x} [/mm] = [mm] 4x^3 [/mm] + 4y^2x - 4x
2) := [mm] \frac{\partial f}{\partial y} [/mm] = [mm] 4y^3 [/mm] + 4x^2y - 4y

Für die lokalen Extrema sucht man ja zunächst die kritischen Punkte, also jene mit:

[mm] \Delta [/mm] (andersrum) [mm] f(x_0) [/mm] = 0
d.h. gefragt ist, welche x und y erfüllen das nicht lineare LGS:
1) = 0
2) = 0

Kann mir jemand sagen, welche prinzipiellen Lösungsmöglichkeiten bei so einer Aufagbe hat?
Also mann kann ja z.B. mal so anfangen:
1) 4x [mm] (x^2 [/mm] + [mm] y^2 [/mm] - 1)
und dann sieht man das bei x=0 y beliebig 1) eine NST hat.
Wenn man das mit 2) macht kommt man zum Schluss, dass (0,0) eine NST ist.
Aber wie kommt man auf die anderen zwei Lösungen?
Das Problem ist halt, dass die beiden Lösungen von einander abhängen.
Führen Äquivalenzumformunegn wie in einem LGS ev. zum Ziel?

Ich suche also nach einem möglichst enfachen Weg, der einem sicher zu den Nullstellen der obigen Gleichungen liefert.

Danke und Grüße
Murmel



        
Bezug
NST kubischer Gl. mehrerer Var: Antwort
Status: (Antwort) fertig Status 
Datum: 00:35 Mo 18.06.2007
Autor: leduart

Hallo murmel
Dein Missverständnis ist, dass es genau 3 Lösungen gibt.
aber du hast ja hier z.Bsp beide Gl. sind 0 für [mm] x^2+y^2-1=0 [/mm]
also [mm] x^2+y^2=1 [/mm] dass sind alle Punkte die auf nem Kreis radius 1 um 0 liegen, also ziemlich viel mehr als 3!
f(x,y)=0 ist eine implizit gegebene Kurve im [mm] \IR^2. [/mm] dazu können natürlich auch isolierte Punkte wie bei dir (0,0) gehören, oder es können mehrere Kurven sein wie z. Bsp wenn du einfach als f(x,y) das Produkt zweier Kreise nimmst usw.
Also kein allgemeins Verfahren!
Gruss leduart

Bezug
                
Bezug
NST kubischer Gl. mehrerer Var: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:27 Mo 18.06.2007
Autor: Mumrel

Hallo Leduart,

na auch mal wieder nachtaktiv ;).

Ja da hast du natürlich Recht.
1) hat für ein festes y genau drei (ev. komplexe) Nullstellen.
Da es auf einem Intervall überabzählbar viele y gibt, kann das mit den drei natürlich nicht stimmen.

Dann kommme ich zu dem Schluss, dass
(0,0) sowie alle Punkte auf dem Kreis mit Radius 1 um den Nullpunkt.
kritische Punkte sind.
Ein Plot bestätigt das.

[Dateianhang nicht öffentlich]

Mal sehn wie man das dann weiterrechnet..:)

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de