www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Nachweis Geradenschar-Ebene
Nachweis Geradenschar-Ebene < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachweis Geradenschar-Ebene: Frage
Status: (Frage) beantwortet Status 
Datum: 11:00 Sa 05.03.2005
Autor: LaLeLu

Ich habe eine Geradenschar(gk:(-20/-10/4)+t*(14/k-7/-k)) und soll nachweisen, dass alle Geraden dieser Schar in einer Ebene liegen.
Ich habe ersteinmal eine mögliche Ebenengleichung aufgestellt mit der Geradenschar und für den zweiten RV habe ich anstelle des k eine andere Variable eingesetzt.
Überlegt habe ich, dass der RV der Ebene ja dann theoretisch unabhänig von k sein muss oder ?
Jetzt komme ich von der Überlegung/Rechnung her nicht weiter.
Danke LG



        
Bezug
Nachweis Geradenschar-Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 Sa 05.03.2005
Autor: Marc

Hallo LaLeLu!

[willkommenmr]

> Ich habe eine Geradenschar(gk:(-20/-10/4)+t*(14/k-7/-k))
> und soll nachweisen, dass alle Geraden dieser Schar in
> einer Ebene liegen.
>   Ich habe ersteinmal eine mögliche Ebenengleichung
> aufgestellt mit der Geradenschar und für den zweiten RV
> habe ich anstelle des k eine andere Variable eingesetzt.
>  Überlegt habe ich, dass der RV der Ebene ja dann
> theoretisch unabhänig von k sein muss oder ?

Du meinst hier, dass die beiden RV linear unabhängig sein müssen, oder?
Ja, das ist dann richtig, nur ist es schwierig, das allgemein zu zeigen.

Ich würde es so machen:

1. Für zwei konkrete Zahlenwerte von k bilde greife ich zwei Vektoren aus der RV-Schar heraus.

2. Nun zeigen, dass diese beiden Vektoren linear unabhängig sind (beim Aufbau dieser Schar muss man schon grosses Pech haben, zwei linear abhängige zu finden :-)).

3. Jetzt kannst du schon die Parameterdarstellung der Ebene bilden.

4. Wenn die Geraden alle in einer Ebene liegen, dann muss es diese sein.
Das ist nun ganz einfach zu zeigen, am besten, die bildest erst die Koordinatengleichung der Ebene und zeigst nun, dass Normalenvektor und RV der Geraden orthogonal sind (dass sie einen gemeinsamen Punkt haben, dürfte bei geschickter Wahl des Aufpunktes der Ebene klar sein :-))

Viele Grüße,
Marc

Bezug
                
Bezug
Nachweis Geradenschar-Ebene: ok
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Sa 05.03.2005
Autor: LaLeLu

Dankeschön, das habe ich gut nachvollziehen können und hat geklappt :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de