www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Nachweis Körper
Nachweis Körper < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachweis Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Sa 29.05.2010
Autor: kunterbunt

Aufgabe
Weisen Sie nach: ({0, 1}, XOR, AND) ist ein Ko ̈rper. (4 Punkte)
Sie ko ̈nnen fu ̈r die 2 Aufgaben auf diesem U ̈bungszettel insgesamt bis zu 20 Punkte erhalten. Genauere Angaben zur Abgabe der U ̈bungszettel finden Sie auf der letzten Seite, nach den Aufgaben.
0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1
(Hinweis: Fu ̈hren Sie den Nachweis entweder, indem Sie die Gu ̈ltigkeit aller Ko ̈rper- Axiome nachweisen, oder benutzen Sie den Umstand, dass 2 eine Primahl ist. Resultate aus der Vorlesung mu ̈ssen auch nicht mehr bewiesen werden.)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Wie genau führe ich diesen Nachweiß durch?
Ich kann die Definition nennen, aber überhaupt nicht anwenden!
Fu ̈r einen Ko ̈rper (K,+,·) muss gelten:

+: K × K → K und ·: K × K → K sind zweistellige Operationen auf K. + und · sind assoziativ, d.h., es gilt fu ̈r alle x,y,z ∈ K:
(x+y)+z=x+(y+z) und (x·y)·z=x·(y·z)

+ hat ein neutrales Element, welches mit 0 bezeichnet wird und · hat ein neutrales Element, welches mit 1 bezeichnet wird.

Jedes Element hat ein additives Inverses und jedes Element, außer 0, hat ein multiplikatives Inverses.

+ und · sind kommutativ, d.h., es gilt fu ̈r alle x,y ∈ K:
x+y=y+x und x·y=y·x

Es gilt das Distributivgesetz, d.h., fu ̈r alle x , y , z ∈ K gilt
x·(y+z)=x·y+x·z und (x+y)·z=x·z+y·z (Das zweite Distributivgesetz folgt aus dem ersten aufgrund
der Kommutativit ̈at von + und ·.)

        
Bezug
Nachweis Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Sa 29.05.2010
Autor: Arcesius

Hallo

Du hast im Prinzip alles genannt, was du überprüfen musst...

Nur anstatt von + und [mm] \cdot [/mm] hast du jetzt die Operationen XOR und AND.. aber zu überprüfen, ob diese Operationen das gewünschte erfüllen, ist jetzt ja einfach, da du sogar gegeben hast, was die Resultate sind.

Und da dein "Körper" nur 2 Elemente hat, ist es nicht so aufwändig alles zu überprüfen.

Grüsse, Amaro

Bezug
                
Bezug
Nachweis Körper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 So 30.05.2010
Autor: kunterbunt

Ich habe also im Endeffekt 5 Bedingungen:
Muss assoziativ sein, muss 0 und 1 haben, die additive und die multiplikative Inverses muss gebildet werden können, dass Kommutativgesetz muss gelten und das Distributiv gesetz....
Das erste Bsp. also 0 XOR 0 =0 gilt nicht...
Heißt das, dass dann 0 XOR 0=0 ist kein Körper?

Bezug
                        
Bezug
Nachweis Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 So 30.05.2010
Autor: Arcesius

Hey

> Ich habe also im Endeffekt 5 Bedingungen:
>  Muss assoziativ sein, muss 0 und 1 haben, die additive und
> die multiplikative Inverses muss gebildet werden können,
> dass Kommutativgesetz muss gelten und das Distributiv
> gesetz....
>  Das erste Bsp. also 0 XOR 0 =0 gilt nicht...
>  Heißt das, dass dann 0 XOR 0=0 ist kein Körper?

Was 0 XOR 0 = 0 ist kein Körper.. was ist das für eine Aussage???

Du hast gegeben eine Menge [mm] \{0,1\} [/mm] und zwei Operationen, XOR und AND

Für deine Operationen hast du gegeben, wie sie ausgerechnet werden.. also beispielsweise 0 XOR 0 = 0
Du musst nun Zeigen, dass deine Menge, zusammen mit den Operationen, ein Körper ist.

Jetzt weist du ales nach, was für einen Körper gelten muss.. beispielsweise die Kommutativität vom XOR:

0 XOR 1 = 1 = 1 XOR 0
(Das kannst du an den angegebenen Daten ablesen)

Jetzt die Kommutativität von AND:

1 AND 0 = 0 = 0 AND 1

Jetzt prüfst du die Distributivität, Assoziativität, findest das neutrale Element für XOR bzw. AND, sowie die Inversen. :)

Grüsse, Amaro

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de