www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Nachweis bijektiv
Nachweis bijektiv < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachweis bijektiv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:29 Mo 25.10.2004
Autor: KingSebtor

Weisen sie nach, dass die Abbildung  f(n)   [mm] \IN \to \IZ [/mm] gemäß:


            - [mm] \bruch{(n-1)}{2} [/mm]            falls n ungerade
f(n):=     [mm] \bruch{n}{2} [/mm]                 falls n gerade


bijektiv ist und geben sie die umkehrabbildung an!



tja das ist die aufgabe habe keinen schimmer wie ich die lösen soll habe schon vieles probiert!

vielleicht kann mir mal bitte die aufgabe vorrechnen!

Danke

        
Bezug
Nachweis bijektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:33 Mo 25.10.2004
Autor: KingSebtor

das " -  "  soll für den ganzen bruch stehen!

naja muss noch etwas über mit dem editor :-)

Bezug
        
Bezug
Nachweis bijektiv: Bijektivität
Status: (Antwort) fertig Status 
Datum: 09:19 Di 26.10.2004
Autor: Gnometech

Guten Morgen KingSebtor!

Die Hinweise vom letzten Mal scheinen noch nicht gereicht zu haben... also nun etwas konkreter:

Sei $f: [mm] \IN \to \IZ$ [/mm] definiert durch:

$f(n) := [mm] -\frac{n-1}{2}$ [/mm] falls $n$ ungerade
$f(n) := [mm] \frac{n}{2}$ [/mm] falls $n$ gerade

Um diese Abbildung geht es. Zeigen wir zunächst die Injektivität.

Seien also $m,n [mm] \in \IN$ [/mm] gegeben mit $f(n) = f(m)$. Als erstes stellen wir fest, dass falls $n$ ungerade, so folgt $f(n) [mm] \leq [/mm] 0$ aus der Definition von $f$. Und falls $n$ gerade, so folt automatisch $f(n) > 0$ aus der gleichen Definition.

Da ja $f(m) = f(n)$ vorausgesetzt ist, müssen entweder $m$ und $n$ beide ungerade oder beide gerade sein.

Fall 1: $m$ und $n$ sind ungerade.

Dann gilt:

[mm] $-\frac{n-1}{2} [/mm] = - [mm] \frac{m-1}{2} \Leftrightarrow [/mm] n-1 = m-1 [mm] \Leftrightarrow [/mm] n = m$.

Fall 2: $m$ und $n$ sind beide gerade.

Dann aber gilt:

[mm] $\frac{n}{2} [/mm] = [mm] \frac{m}{2} \Leftrightarrow [/mm] m = n$.

In beiden Fällen sind wir fertig.

Zur Surjektivität: Sei $z [mm] \in \IZ$ [/mm] beliebig vorgegeben. Gesucht ist ein $n [mm] \in \IN$ [/mm] mit $f(n) = z$.

Fall 1: $z > 0$

Dann definiere $n := 2z [mm] \in \IN$. [/mm] Damit ist $n$ gerade und die Definition von $f$ liefert: $f(n) = [mm] \frac{n}{2} [/mm] = [mm] \frac{2z}{2} [/mm] = z$

Fall 2: $z [mm] \leq [/mm] 0$

In dem Fall definiere $n := -(2z - 1)$. Denn aus $z [mm] \leq [/mm] 0$ folgt $2z -1 [mm] \leq [/mm] -1$ und damit $n [mm] \geq [/mm] 1$, also $n [mm] \in \IN$. [/mm]

Außerdem ist $n$ sicher ungerade ($n = -2z + 1$) und daher folgt:

$f(n) = [mm] -\frac{n-1}{2} [/mm] = - [mm] \frac{-2z}{2} [/mm] = z$.

Damit ist der Beweis der Surjekitivität abgeschlossen.

Die Umkehrabbildung steckt ebenfalls im Beweis versteckt. Ist es jetzt klarer geworden? Schwer ist es nicht, eigentlich nur einsetzen der Definitionen... :-)

Also, sollte noch etwas unklar sein, frag einfach nach.

Lars


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de