www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Nachweis von Surjektivität
Nachweis von Surjektivität < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachweis von Surjektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 So 05.11.2006
Autor: megakampfzwerg

Aufgabe
Untersuchen Sie die folgende Abbildung f: R->R auf Injektivität und Surjektivität.
[mm] f(x)=ax^2+bx+c [/mm]  , a,b,c Element von R  , a ungleich 0

Die Frage nach der Injektivität konnte ich noch alleine lösen. Bei der Surjektivität komme ich allerdings nicht weiter... Meine Frage ist nun ob es eine allgeimeingültige Vorgehensweise gibt um Surjektivität nachzuweisen?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nachweis von Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 12:43 So 05.11.2006
Autor: DaMenge

Hi,

zur Surjektivität muss man sich nur überlegen, dass eine quadratische Funktion ein Maximum (bzw Minimum, wenn a<0) hat und man es angeben kann, also ganz allgemein mit den Variablen Ableiten, dann gleich 0 setzen usw...
Dadurch bestimmt man die Extremstelle/Scheitelpunkt [mm] $(x_s [/mm] , [mm] y_s)$ [/mm]

wenn a>0 , dann wähle ein [mm] $y'>y_s$ [/mm] und weil [mm] y_s [/mm] maximal war, wird y' nie erreicht (analog bei a<0)

viele Grüße
DaMenge

Bezug
                
Bezug
Nachweis von Surjektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 So 05.11.2006
Autor: megakampfzwerg

Hallöle!

Erst einmal danke, dass du mir helfen möchtset. Aber ich verstehe nicht wirklich was du mir sagen willst...

viele liebe Grüße

Bezug
                        
Bezug
Nachweis von Surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 09:17 Mo 06.11.2006
Autor: angela.h.b.


> Aber ich
> verstehe nicht wirklich was du mir sagen willst...

Wenn man nur wüßte, was Du nicht verstehst...

Surjektiv bedeutet ja, daß ganz [mm] \IR [/mm] "von Funktionswerten getroffen" wird.

DaMenge wollte Dich motivieren, über den Verlauf der Fuktion nachzudenken.

Mal angenommen, Du findest heraus, daß sie ein Minimum bei [mm] (x_e, y_e) [/mm] hat.

Wenn Du Dir dann ei [mm] y
Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de