www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Nährungswert über Tangente
Nährungswert über Tangente < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nährungswert über Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:11 Fr 20.01.2012
Autor: defjam123

Aufgabe
Berechnen Sie eine Näherung für  [mm] \bruch{e^{\bruch{1}{8}}}{\wurzel[4]{17}} [/mm]

Berechnen Sie zunächst einen Nährungswert für [mm] e^{\bruch{1}{8}} [/mm] über die Tangente an [mm] f(x)=e^{x} [/mm] in [mm] x_{0}=0. [/mm] Berechnen Sie des Weiteren einen Näherungswert für [mm] \wurzel[4]{17} [/mm] über eine geeignete Tangente an [mm] g(x)=\wurzel[4]{x}. [/mm] Nutzen sie die beiden Werte, um den gesuchten Näherungswert für [mm] \bruch{e^{\bruch{1}{8}}}{\wurzel[4]{17}} [/mm] anzugeben.

Hi!

Den ersten Näherungswert für [mm] e^{\bruch{1}{8}} [/mm] konnnte ich lösen. Hierfür habe für den Y-achsenabschnitt der Tangente [mm] x_{0}=0 [/mm] in die [mm] f(x)=e^{x} [/mm] eingesetzt.
Für den Y-Achsenabschnitt hab ich somit 1 raus. Für die Steigung hab [mm] x_{0}=0 [/mm] in die Ableitung [mm] f'(x)=e^{x} [/mm] eingesetzt und ebenfalls den Wert 1 raus.
Die Tangte lautet bei mir somit y=x+1.
Um nun den Nährunswert zu erhalten habe ich [mm] \bruch{1}{8} [/mm] für x in meine formulierte Tangentengleichung eingesetzt.
[mm] y=\bruch{1}{8}+1=1,125 [/mm]

Somit ist der Nährungswert für [mm] e^{\bruch{1}{8}}=1,125 [/mm]

Hoffe das ist soweit richtig?

Wie ich den Nährungswert der [mm] \wurzel[4]{17} [/mm] ermittele, da weiß ich leider nicht weiter.
[mm] x_{0}=0 [/mm] Einzusetzen würde bei der Wurzel ja nicht viel Sinn machen? Welchen Wert müsste ich den dabei Benutzen?

Um dann die Näherung für  [mm] \bruch{e^{\bruch{1}{8}}}{\wurzel[4]{17}} [/mm]
zu erhalten müsste ich doch einfach die beiden Nährungswerte teilen?

Wäre für Hilfe Dankbar

Gruß

        
Bezug
Nährungswert über Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 08:44 Fr 20.01.2012
Autor: chrisno

Von welcher Zahl in der Nähe von 17 kannst Du die vierte Wurzel ohne Taschenrechner angeben?
Dann berechnest Du die Ableitung der vierten Wurzel an dieser Stelle und machst so weiter wie bei der e-Funktion.

> Um dann die Näherung für  $ [mm] \bruch{e^{\bruch{1}{8}}}{\wurzel[4]{17}} [/mm] $ zu erhalten müsste ich doch einfach die beiden Nährungswerte teilen?

Das würde ich so machen.

Bezug
                
Bezug
Nährungswert über Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:32 Fr 20.01.2012
Autor: defjam123

Vielen Dank!

Ich habs für den zweiten Nährungswert nun folgendermaßen gemacht:

[mm] g(x)=\wurzel[4]{x} [/mm]

Y-Achsenabschnitt der Tangente:

g(16)=2

Steigung der Tangente:

g'(x)= [mm] \bruch{1}{4}*x^{-\bruch{3}{4}} [/mm]

g'(16)= [mm] \bruch{1}{4}*\bruch{1}{\wurzel[4]{16^{3}}} [/mm]

[mm] g'(16)=\bruch{1}{4}*\bruch{1}{8}=\bruch{1}{32} [/mm]

Die Tangentegleichung ist somit:

[mm] y=\bruch{1}{32}x+2 [/mm]

Ich hab nun für x = [mm] \bruch{1}{4} [/mm] eingesetzt. Ist das richtig?

Der Nährungswert ist dann [mm] \wurzel[4]{17}=\approx2,0078 [/mm]

Die Nährung für [mm] \bruch{e^{\bruch{1}{8}}}{\wurzel[4]{17}} [/mm]  ergibt sich aus
[mm] \bruch{1,125}{\bruch{257}{128}}=\bruch{144}{257}\approx0.5603 [/mm]

Ist das so richtig?

Gruß

Bezug
                        
Bezug
Nährungswert über Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 Fr 20.01.2012
Autor: abakus


> Vielen Dank!
>  
> Ich habs für den zweiten Nährungswert nun folgendermaßen
> gemacht:
>  
> [mm]g(x)=\wurzel[4]{x}[/mm]
>  
> Y-Achsenabschnitt der Tangente:
>  
> g(16)=2
>  
> Steigung der Tangente:
>  
> g'(x)= [mm]\bruch{1}{4}*x^{-\bruch{3}{4}}[/mm]
>  
> g'(16)= [mm]\bruch{1}{4}*\bruch{1}{\wurzel[4]{16^{3}}}[/mm]
>  
> [mm]g'(16)=\bruch{1}{4}*\bruch{1}{8}=\bruch{1}{32}[/mm]
>  
> Die Tangentegleichung ist somit:
>  
> [mm]y=\bruch{1}{32}x+2[/mm]

Hallo,
das ist falsch. Wenn die Gerade einen positiven Anstieg hat und an der Stelle 16 den Funktionswert 2, dann kann sie bei x=0 (also auf der y-Achse) nicht auch den Wert 2 haben.
Gruß Abakus

>  
> Ich hab nun für x = [mm]\bruch{1}{4}[/mm] eingesetzt. Ist das
> richtig?
>  
> Der Nährungswert erhalt ich dann
> [mm]\wurzel[4]{17}=\approx2,0078[/mm]
>  
> Die Nährung für [mm]\bruch{e^{\bruch{1}{8}}}{\wurzel[4]{17}}[/mm]  
> ergibts aus
> [mm]\bruch{1,125}{\bruch{257}{128}}=\bruch{144}{257}\approx0.5603[/mm]
>  
> Ist das so richtig?
>  
> Gruß


Bezug
                                
Bezug
Nährungswert über Tangente: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:07 Fr 20.01.2012
Autor: defjam123

Danke!

Meine berechnete Steigung müsste aber richtig sein oder?

Dann würde ich wie folgt vorgehene:

Da ich ja die Steigung kenne und die Information g(16)=2 habe sieht meine Gleichung folgendermaßen aus.

y=mx+b

[mm] 2=\bruch{1}{32}*16+b [/mm]

[mm] b=\bruch{3}{2} [/mm]

Meine vollständige Tangentengleichung lautet nun:

[mm] y=\bruch{1}{32}*x+\bruch{3}{2} [/mm]

Der Nährungswert für [mm] \wurzel[4]{17} [/mm] ergibt sich aus

[mm] \wurzel[4]{17}=\bruch{1}{32}*\bruch{1}{4}+\bruch{3}{2}=\bruch{193}{128}\approx1,5078 [/mm]

Die Nährung für [mm] \bruch{e^{\bruch{1}{8}}}{\wurzel[4]{17}} [/mm] ergibt sich dann aus [mm] \bruch{1,125}{\bruch{193}{128}}=\bruch{144}{193}\approx0,7461 [/mm]

Ist dieser Lösungsweg richtig bzw auch richtig formuliert?

Gruß





Bezug
                                        
Bezug
Nährungswert über Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 10:46 Fr 20.01.2012
Autor: chrisno


> Meine berechnete Steigung müsste aber richtig sein oder?

ja

>  
> Dann würde ich wie folgt vorgehene:
>  
> Da ich ja die Steigung kenne und die Information g(16)=2
> habe sieht meine Gleichung folgendermaßen aus.
>  
> y=mx+b
>  
> [mm]2=\bruch{1}{32}*16+b[/mm]
>  
> [mm]b=\bruch{3}{2}[/mm]
>  
> Meine vollständige Tangentengleichung lautet nun:
>  
> [mm]y=\bruch{1}{32}*x+\bruch{3}{2}[/mm]
>  

[ok]

> Der Nährungswert für [mm]\wurzel[4]{17}[/mm] ergibt sich aus
>  
> [mm]\wurzel[4]{17}=\bruch{1}{32}*\bruch{1}{4}+\bruch{3}{2}=\bruch{193}{128}\approx1,5078[/mm]

Nein, Du musst nun 17 für x einsetzen. Das sollte Dir auch auffallen, denn Dein Näherungswert ist kleiner als 2. Das muss falsch sein.

>  
> Die Nährung für [mm]\bruch{e^{\bruch{1}{8}}}{\wurzel[4]{17}}[/mm]
> ergibt sich dann aus
> [mm]\bruch{1,125}{\bruch{193}{128}}=\bruch{144}{193}\approx0,7461[/mm]

Ich rate Dir, das zum Vergleich direkt mit dem Taschenrechner auszurechnen.

>  
> Ist dieser Lösungsweg richtig bzw auch richtig
> formuliert?

Die Formulierungen finde ich in Ordnung

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de