www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Nebenbedingung
Nebenbedingung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nebenbedingung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:25 Do 11.12.2008
Autor: Zuggel

Aufgabe
Gesucht sind die Max / Min der Funktion f(x,y) = -3x+2y auf:

E={(x,y,z): [mm] x²+y²\ge [/mm] 2, [mm] x²+y²+z²\le [/mm] 4 }

Hallo alle zusammen.

Also das Problem habe ich gelöst, nur mir stellen sich hier so einige Fragen über die Nebenbedingung, zeurst der Rechenweg:

Fall 1:

[mm] f(x,y,\lambda) [/mm] = [mm] -3x+2y+\lambda*(x²+y²-2) [/mm]

[mm] \partial [/mm] x [mm] -3+\lambda*(2x=0 [/mm]
[mm] \partial [/mm] y 2 + [mm] \lambda*(2y)=0 [/mm]
[mm] \partial \lambda [/mm] x²+y²=2

aus [mm] \partial [/mm] y:

[mm] \lambda=1/y [/mm]

in [mm] \partial [/mm] x:

3+2x/y=0
3y+2x=0
y=-2/3*x

x²+4/9x²=2
[mm] x=\pm\wurzel{18/13} [/mm]

Somit habe ich die Punkte:

[mm] P_1(\wurzel{18/13},\wurzel{8/13},0) [/mm]
[mm] P_2 (-\wurzel{18/13},\wurzel{8/13},0) [/mm]

Fall 2:

Nochmal für: [mm] f(x,y,\lambda)=-3x+2y+\lambda*(x²+y²+z²-4 [/mm] )

[mm] \partial [/mm] x [mm] -3+\lambda*(2x)=0 [/mm]
[mm] \partial [/mm] y [mm] 2+\lambda*(2y)=0 [/mm]
[mm] \partial [/mm] z [mm] \lambda*2z=0 [/mm]
[mm] \partial \lambda [/mm] x²+y²+z²=4

[mm] \lambda=0 [/mm]
z=0

mit [mm] \lambda=0 [/mm] erreiche nich nichts

mit z=0

bin ich wieder im fast gleichen Fall wie vorhin:

aus [mm] \partial [/mm] y:

[mm] \lambda=1/y [/mm]

in [mm] \partial [/mm] x:

3+2x/y=0
3y+2x=0
y=-2/3*x

x²+4/9x²=2
[mm] x=\pm\wurzel{36/13} [/mm]

Somit habe ich die Punkte:

[mm] P_3(\wurzel{36/13},\wurzel{16/13},0) [/mm]
[mm] P_4(-\wurzel{36/13},\wurzel{16/13},0) [/mm]

Fall 3:

Und nochmal für:

[mm] f(x,y,\lambda_1,\lambda_2)=-3x+2y+\lambda_1*(x²+y²-2)+\lambda_2*(x²+y²+z²-4 [/mm] )

[mm] \partial [/mm] x [mm] -3+\lambda_1*(2x)+\lambda_2*(2x)=0 [/mm]
[mm] \partial [/mm] y [mm] 2+\lambda_1*(2y)+\lambda_2*(2y)=0 [/mm]
[mm] \partial [/mm] z [mm] \lambda_2*(2z)=0 [/mm]

aus [mm] \partial [/mm] z bekomme ich [mm] \lambda_2=0 [/mm] oder z=0

mit [mm] \lambda_2=0 [/mm] bin ich wieder im "Fall 1"
mit z=0 bin ich im "Fall 2" (dabei nehme ich [mm] \partial [/mm] x un [mm] \partial [/mm] y her, fasse [mm] \lambda_2 [/mm] und [mm] \lambda_1 [/mm] zusammen und löse die beiden Gleichungen durch Additionsverfahren auf und erhalte damit den gleichen Weg wie bei Fall 2)


So nun meine Probleme:


Ich habe hier jetzt folgendes Untersuch:

Fall 1: Die Extrema auf dem Zylinder mit keiner Begrenzung in Richtung z
Fall 2: Die Kugel mit Radius 2
Fall 3: Der Kreisring welcher auf der Kugel liegt mit Koordinaten z: [mm] \pm \wurzel{2} [/mm] (liege ich hiermit richtig?)

Also ich frage mich nun:

Im Fall 1 habe ich ja keine Abhängigkeit von z, also könnte ich ja rein theoretisch die Punkte nicht nur in z=0 sondern auch sonst wo wählen, kann das sein? Aber wieso kann ich sie mit z beliebig wählen, wenn die Ebene den Zylinder nicht parallel zur z Achse schneidet, sondern schief ist?

Fall 2 untersucht mir die Kugel nach Max / Min

Fall 3 Wie komme ich jetzt dazu, dass mir durch die Rechnung die Max / Min nicht auf dem Kreisring auf der Oberfläche der Kugel gegeben werden, sondern in z=0? Das verdutzt mich jetzt schon etwas, denn mit den beiden Lagrange Multiplikatoren müsste ich doch eigentlich in [mm] z=\pm [/mm] Wurzel(2) sein und nicht in z=0?

Hat hier jemand eine Erklärung für mich?


Dankeschön
lg
Zuggel

        
Bezug
Nebenbedingung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Di 16.12.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de