www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Nebenklassen, Kardinalität
Nebenklassen, Kardinalität < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nebenklassen, Kardinalität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Sa 02.03.2013
Autor: quasimo

Aufgabe
Unsere Definition, und die Äquivalenzklassen:
Sei G eine Gruppe und H [mm] \le [/mm] G. Auf G defeniert man zwei Relationen ~_r und ~_l durch a ~_r b <=> a [mm] b^{-1} \in [/mm] H
a ~_l b <=> [mm] a^{-1} [/mm] b [mm] \in [/mm] H
DIe Äquivalenzklassen von a [mm] \in [/mm] G bez ~_r ist die folgende Menge Ha [mm] =\{ha | h \in H\}, [/mm] die Äquivalenzklassen von a [mm] \in [/mm] G bezüglich ~_l ist die Menge [mm] aH=\{ah|h\in H\} [/mm]

Nun haben wir das Lemma:
|aH| = |H|= |Ha| [mm] \forall [/mm] a [mm] \in [/mm] G
Bew: Abbildung H -> Ha, h-> ha ist bijektiv

Dann hatten wir noch das Lemma:
Die Menge der Linksnebenklassen von H in G und der Rechtsnebenklassen von H in G haben dieselbe Kardinalität

Was ist der Unterschied der zwei Lemmas?

Hallo,
Meine Frage ist denke ich klar ;)
LG

        
Bezug
Nebenklassen, Kardinalität: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 Sa 02.03.2013
Autor: steppenhahn

Hallo quasimo,


> Unsere Definition, und die Äquivalenzklassen:
>  Sei G eine Gruppe und H [mm]\le[/mm] G. Auf G defeniert man zwei
> Relationen ~_r und ~_l durch a ~_r b <=> a [mm]b^{-1} \in[/mm] H
>  a ~_l b <=> [mm]a^{-1}[/mm] b [mm]\in[/mm] H

>  DIe Äquivalenzklassen von a [mm]\in[/mm] G bez ~_r ist die
> folgende Menge Ha [mm]=\{ha | h \in H\},[/mm] die Äquivalenzklassen
> von a [mm]\in[/mm] G bezüglich ~_l ist die Menge [mm]aH=\{ah|h\in H\}[/mm]
>  
> Nun haben wir das Lemma:
>  |aH| = |H|= |Ha| [mm]\forall[/mm] a [mm]\in[/mm] G
>  Bew: Abbildung H -> Ha, h-> ha ist bijektiv

>  
> Dann hatten wir noch das Lemma:
>  Die Menge der Linksnebenklassen von H in G und der
> Rechtsnebenklassen von H in G haben dieselbe Kardinalität
>  
> Was ist der Unterschied der zwei Lemmas?

Das erste Lemma macht eine Aussage über die Anzahl der Elemente der Nebenklassen.

Das zweite Lemma macht eine Aussage über die Anzahl der Nebenklassen, also über [mm] $|\{aH: a\in G\}|$. [/mm]


Viele Grüße,
Stefan

Bezug
        
Bezug
Nebenklassen, Kardinalität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:38 So 03.03.2013
Autor: fred97


> Unsere Definition, und die Äquivalenzklassen:
>  Sei G eine Gruppe und H [mm]\le[/mm] G. Auf G defeniert man zwei
> Relationen ~_r und ~_l durch a ~_r b <=> a [mm]b^{-1} \in[/mm] H
>  a ~_l b <=> [mm]a^{-1}[/mm] b [mm]\in[/mm] H

>  DIe Äquivalenzklassen von a [mm]\in[/mm] G bez ~_r ist die
> folgende Menge Ha [mm]=\{ha | h \in H\},[/mm] die Äquivalenzklassen
> von a [mm]\in[/mm] G bezüglich ~_l ist die Menge [mm]aH=\{ah|h\in H\}[/mm]
>  
> Nun haben wir das Lemma:
>  |aH| = |H|= |Ha| [mm]\forall[/mm] a [mm]\in[/mm] G
>  Bew: Abbildung H -> Ha, h-> ha ist bijektiv

>  
> Dann hatten wir noch das Lemma:
>  Die Menge der Linksnebenklassen von H in G und der
> Rechtsnebenklassen von H in G haben dieselbe Kardinalität
>  
> Was ist der Unterschied der zwei Lemmas?

Der Plural von Lemma ist Lemmata !

FRED

>  Hallo,
>  Meine Frage ist denke ich klar ;)
>  LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de