www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Neigungswinkel Funktionsschar
Neigungswinkel Funktionsschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Neigungswinkel Funktionsschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:30 Di 14.02.2012
Autor: Schobbi

Aufgabe
Eine neue Achterbahn wird so geplant, dass nach einer Auffahrt eine steile Abfahrt folgt. Der zugehörige Graph wird modelhaft durch die Funktion [mm] f_{t}=100t^{2}x^{2}e^{-tx} [/mm] beschrieben (t>0). Hierbei starten die Wagen bei x=0. [mm] f_{t}(x) [/mm] ist die höhe (in Metern) der Bahn im Abstand x vom Start.

a) Berechnen Sie den steilsten Ansteig und den steilsten Abfall der Bahn in Abhängigkeit von t. Wie groß ist der steilste Anstieg und der steilste Abfall für t=0,1.

b)Besteimmen Sie für ein beliebieges t die Steigung der Bahn am Start.

c) Zeigen Sie, dass die maximale Bahnhöhe unabhängig von t ist und bestimmen Sie diese.

d) Der maximale Neigungswinkel der Abhaft soll 70° sein. Für welches t wird dies erfüllt?

Hallo zusammen!

Ich hänge momentan bei o.g. Aufgabe fest. Die Aufgabenteile a) bis c) habe ich problemlos gelöst.

a) Berechnung der Wendepunkte: [mm] x_{1,2}=\bruch{2\pm\Wurzel{2}}{t} [/mm]

b) Bestimmung von f'_{t}(x): [mm] f'_{t}(x)=e^{-tx}*(200t^{2}x-100t^{3}x^{3}) [/mm]

c) Bestimmung der Hochpunkte: [mm] HP(\bruch{2}{t}/400e^{-2}) [/mm]

Sicherlich muss ich hier den Wendepunkt mit in meine Rechnung einbeziehen, denn dies ist ja die steilste stelle im Graphen. Und wenn ich das t so bestimme, dass in diesem Punkt die Steigung maximal 70° beträgt, gilt das ja auch für alle anderen Punkte im Graph. Jedoch fehlt mit dazu der Ansatz bei Aufgabenteil d) - Vielleich könnt ihr mir da weiterhelfen.

DANKE schon mal im Voraus.

        
Bezug
Neigungswinkel Funktionsschar: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Di 14.02.2012
Autor: fred97


> Eine neue Achterbahn wird so geplant, dass nach einer
> Auffahrt eine steile Abfahrt folgt. Der zugehörige Graph
> wird modelhaft durch die Funktion
> [mm]f_{t}=100t^{2}x^{2}e^{-tx}[/mm] beschrieben (t>0). Hierbei
> starten die Wagen bei x=0. [mm]f_{t}(x)[/mm] ist die höhe (in
> Metern) der Bahn im Abstand x vom Start.
>  
> a) Berechnen Sie den steilsten Ansteig und den steilsten
> Abfall der Bahn in Abhängigkeit von t. Wie groß ist der
> steilste Anstieg und der steilste Abfall für t=0,1.
>  
> b)Besteimmen Sie für ein beliebieges t die Steigung der
> Bahn am Start.
>  
> c) Zeigen Sie, dass die maximale Bahnhöhe unabhängig von
> t ist und bestimmen Sie diese.
>  
> d) Der maximale Neigungswinkel der Abhaft soll 70° sein.
> Für welches t wird dies erfüllt?
>  Hallo zusammen!
>  
> Ich hänge momentan bei o.g. Aufgabe fest. Die
> Aufgabenteile a) bis c) habe ich problemlos gelöst.
>  
> a) Berechnung der Wendepunkte:
> [mm]x_{1,2}=\bruch{2\pm\Wurzel{2}}{t}[/mm]
>  
> b) Bestimmung von f'_{t}(x):
> [mm]f'_{t}(x)=e^{-tx}*(200t^{2}x-100t^{3}x^{3})[/mm]
>  
> c) Bestimmung der Hochpunkte: [mm]HP(\bruch{2}{t}/400e^{-2})[/mm]
>  
> Sicherlich muss ich hier den Wendepunkt mit in meine
> Rechnung einbeziehen, denn dies ist ja die steilste stelle
> im Graphen. Und wenn ich das t so bestimme, dass in diesem
> Punkt die Steigung maximal 70° beträgt, gilt das ja auch
> für alle anderen Punkte im Graph. Jedoch fehlt mit dazu
> der Ansatz bei Aufgabenteil d) - Vielleich könnt ihr mir
> da weiterhelfen.
>

Sei [mm] W(2/t|f_t(2/t)) [/mm] der wendepunkt auf der positiven x-Achse.


Bestimme t so, dass die Wendetangente in W mit der x-Achse einen Winkel von 70° einschließt.

FRED

> DANKE schon mal im Voraus.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de