www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - Newton-Verfahren
Newton-Verfahren < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Newton-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:29 Sa 12.05.2012
Autor: Mathe-Lily

Aufgabe
Gegeben sei die Funktion F: [mm] \R^{3} \to \IR [/mm] durch
F(x) = [mm] e^{x_{1}} cos(x_{2}) [/mm] + [mm] 2x_{1} sin(x_{2}) [/mm] + [mm] (1+x_{1})(1-x_{3})^{2} [/mm]
Zur Bestimmung von Extremalpunkten soll das nichtlineare Gleichungssystem [mm] \Delta [/mm] F(x) = 0 mit Hilfe des Newton-Verfahrens gelöst werden. Stellen Sie die Iterationsvorschrift auf.
(Die dabei auftretenden Matrixinversion soll nicht explizit berechnet werden.)

Hallo!
Hier ist [mm] \Delta [/mm] F(x) = [mm] (D_{x_{1}} [/mm] F, [mm] D_{x_{2}} [/mm] F, [mm] D_{x_{3}} [/mm] F [mm] )^{t}. [/mm]
(D ist dabei die partielle Ableitung)
Und somit habe ich berechnet:
[mm] \Delta [/mm] F(x) = [mm] \vektor{ e^{x_{1}} cos(x_{2}) + 2sin(x_{2}) + (1-x_{3})^{2} \\ -e^{x_{1}} sin(x_{2}) + 2x_{1} cos(x_{2}) \\ (1+x_{1})(-1+x_{3})*2} [/mm]

und
[mm] \Delta [/mm] F'(x) = [mm] \pmat{ e^{x_{1}} cos(x_{2}) & -e^{x_{1}} sin(x_{2}) + 2cos(x_{2}) & -2+2x_{3}\\ -e^{x_{1}} sin(x_{2}) + 2cos(x_{2}) & -e^{x_{1}} cos(x_{2}) - 2x_{1} sin(x_{2}) & 0 \\ -2+2x_{3} & 0 & 2+2x_{1} } [/mm]

Die Newton-Vorschrift sieht ja normaler Weise so aus:
[mm] x_{t+1} [/mm] = [mm] x_{t} [/mm] - [mm] \bruch{f(x_{t})}{f'(x_{t})} [/mm]

Sieht dann "meine" Iteratiosvorschrift so aus:
[mm] x^{(t+1)} [/mm] = [mm] x^{(t)} [/mm] - [mm] \bruch{\Delta F(x^{(t)})}{\Delta F'(x^{(t)})} [/mm] ?

Stimmt das so?
Könnte da mal jemand drüber gucken?
Grüßle, Lily

        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Sa 12.05.2012
Autor: Diophant

Hallo Mathe-Lily,

> Stimmt das so?

ich denke: nein. Man benötigt für das Newton-Verfahren im Mehrdimensionalen eine Jacobi-Matrix (soweit mir bekannt ist).

Es ist dann

[mm]\Delta{x_n}=-(J(x_n))^{-1}*f(x_n)[/mm]

und die Iterationsvorschrift lautet dann

[mm] x_{n+1}=x_n+\Delta{x_n} [/mm]


Gruß, Diophant

Bezug
                
Bezug
Newton-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 So 13.05.2012
Autor: Mathe-Lily


> > Stimmt das so?
>  
> ich denke: nein. Man benötigt für das Newton-Verfahren im
> Mehrdimensionalen eine Jacobi-Matrix (soweit mir bekannt
> ist).

Aber das ist doch die Jacobimatrix, mein [mm] \Delta [/mm] F(x), oder nicht? so ist sie zumindest definiert!?

>  
> Es ist dann
>  
> [mm]\Delta{x_n}=-(J(x_n))^{-1}*f(x_n)[/mm]
>  
> und die Iterationsvorschrift lautet dann
>  
> [mm]x_{n+1}=x_n+\Delta{x_n}[/mm]

ist das nicht genau das, was ich geschrieben habe, nur eben in 2 Gleichungen?
Denn meins ist ja [mm] x^{(t+1)} [/mm] = [mm] x^{(t)} [/mm] - [mm] \bruch{\Delta F(x^{(t)}}{\Delta F'(x^{(t)}}, [/mm] wobei der hintere Teil dein [mm] \Delta{x_n} [/mm] ist.
Oder?

>  
>
> Gruß, Diophant


Bezug
                        
Bezug
Newton-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 So 13.05.2012
Autor: Diophant

Halllo,

tut mir Leid: ich komme nicht mit bei deinem Vorhaben. Für mich steht da eine Division Vektor / Matrix; und so etwas habe ich noch nie gesehen. ;-)

Kann es sein, dass du eine Schreibweise der Form [mm] A^{-1} [/mm] im Zusammenhang mit Matrizen falsch verstehst? Damit ist doch hier die Inverse der Jacobi-Matrix gemeint.


Gruß, Diophant

Bezug
                                
Bezug
Newton-Verfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:50 Mi 16.05.2012
Autor: Mathe-Lily

autsch -.- ich sollte meine gedanken vllt auch mal zu ende denken...
Danke :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de