Nicht ausgeartete Bilinearform < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:46 Sa 10.03.2012 | Autor: | imzadi |
Liebes Forum, eine Bilinearform ist nicht ausgeartet,falls aus der Vorraussetzung B(v,w) gleich 0 folgt fuer alle v dass w gleich 0 und umgekehrt. Wieso ist dann Skalarprodukt nichausgeartet? Im Fall der Ortogonalitaet folgt doch aus S(v,w) fuer alle v, dass es ein w existiert, dass eben ungleich null ist! Ist das nicht schon die Verneinung von Nichtausgeartetheit?
Vielen Dank fuer eure Hilfe.
Gruesse
Imzadi
Ich habe diese Frage nirgendwo in anderen Foren auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:21 Sa 10.03.2012 | Autor: | Marcel |
Hallo,
> Liebes Forum, eine Bilinearform ist nicht ausgeartet,falls
> aus der Vorraussetzung B(v,w) gleich 0 folgt fuer alle v
> dass w gleich 0 und umgekehrt. Wieso ist dann Skalarprodukt
> nichausgeartet? Im Fall der Ortogonalitaet folgt doch aus
> S(v,w) fuer alle v, dass es ein w existiert, dass eben
> ungleich null ist! Ist das nicht schon die Verneinung von
> Nichtausgeartetheit?
das Skalarprodukt erfüllt doch sicher [mm] $=0\,$ [/mm] für alle $v [mm] \in V\,.$ [/mm] Wäre das Skalarprodukt nicht nichtausgeratet (also ausgeartet) - bleiben wir der Einfachheit wegen einfach erstmal im euklidischen [mm] $\IR^n$ [/mm] - so müsste es doch ein $w [mm] \not=0$ [/mm] so geben, dass
[mm] $$B(v,w)=0\,$$
[/mm]
für alle $v [mm] \in V\,.$
[/mm]
Was Du nur begründest, ist, dass es zu jedem $w [mm] \in \IR^n$ [/mm] ein $v [mm] \in \IR^n$ [/mm] mit $v [mm] \not=0$ [/mm] und [mm] $B(v,w)=0\,$ [/mm] gibt. Das ist nicht die Verneinung "der einen Richtung" von nichtausgeartet.
Formal heißt diese eine Bedingung doch:
Sei [mm] $V\,$ [/mm] Vektorraum mit Bilinierform [mm] $B(.,.)\,.$ [/mm] Wenn diese nichtausgeartet ist, so gilt:
Für alle $w [mm] \in [/mm] V$ gilt:
[mm] $$(B(v,w)=0\;\; \forall [/mm] v [mm] \in [/mm] V) [mm] \Rightarrow w=0\,.$$
[/mm]
(Formal: [mm] $\forall [/mm] w [mm] \in V:\;\;(B(v,w)=0\;\;\forall [/mm] v [mm] \in [/mm] V) [mm] \Rightarrow w=0\,.$ [/mm]
Verneinung davon:
[mm] $\exists [/mm] w [mm] \in V:\;\;\Big((B(v,w)=0 \;\;\forall [/mm] v [mm] \in [/mm] V) [mm] \wedge [/mm] w [mm] \not=0\Big)\,.$)
[/mm]
Die obige formale Verneinung ausformuliert:
Es existiert ein $w [mm] \in [/mm] V$ so, dass
$$B(v,w)=0 [mm] \;\;\forall [/mm] v [mm] \in V\,,$$
[/mm]
aber $w [mm] \not=0\,.$
[/mm]
Die von Dir angesprochene Orthogonalität besagt nicht das letztstehende:
Beispiel:
Sei etwa [mm] $w=(1,0,1)^T \in \IR^3\,.$ [/mm] Dann gilt zwar [mm] $<(1,0,1)^T,(0,1,0)^T>=0$ [/mm] obwohl [mm] $(1,0,1)^T \not=(0,0,0)^T\,,$ [/mm] aber [mm] $(1,0,1)^T$ [/mm] erfüllt NICHT
[mm] $$<(1,0,1)^T,v>=0 \text{ für alle }v \in \IR^3\,.$$
[/mm]
Denn: Setze etwa [mm] $v:=(1,0,0)^T\,.$
[/mm]
Allgemeiner:
Beim Skalarprodukt gilt doch für jedes $w [mm] \not=0$
[/mm]
$$<w,w> [mm] \;\;\;\;> \;0\,,$$
[/mm]
d.h. für jedes $w [mm] \in [/mm] V$ gibt es ein $v [mm] \in [/mm] V$ mit $<v,w> [mm] \not=0$ [/mm] - nämlich [mm] $v:=w\,.$ [/mm]
Gilt also
$$<v,w>=0 [mm] \text{ für alle }v\in V\,,$$
[/mm]
so gilt dies insbesondere für [mm] $v:=w\,.$ [/mm] Dann folgt aber [mm] $=0\,,$ [/mm] und das geht eben nur für [mm] $w=0\,,$ [/mm] wie gerade nochmal erwähnt!
P.S.
Die "einfachste" ausgeartete Bilinearform auf [mm] $V\,$ [/mm] ist die [mm] $B(.,.)\,$ [/mm] definiert durch $B(v,w):=0$ für alle $(v,w) [mm] \in [/mm] V [mm] \times V\,.$ [/mm] Warum wohl?
P.P.S.
Bitte aufpassen: Oben meine ich mit [mm] $<.,.>\,$ [/mm] wirklich das Skalarprodukt. Manchmal schreibt man ja auch [mm] $<.,.>:=B(.,.)\,,$ [/mm] also für die Bilinearform: Das mache ich HIER NICHT!!
(Während ein Skalarprodukt AUF EINEM REELLEN VEKTORRAUM stets eine Bilinearform ist, muss umgekehrtes nicht gelten - siehe etwa die obige Bilinearform "Null".)
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 07:30 So 11.03.2012 | Autor: | imzadi |
Danke Marcel,jetzt habe ich es begriffen,alles klar.
Viele Gruesse
Imzadi
|
|
|
|