www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Niveaumengen, Niveaulinien
Niveaumengen, Niveaulinien < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Niveaumengen, Niveaulinien: Skizzieren der Niveaulinien
Status: (Frage) beantwortet Status 
Datum: 19:35 Sa 14.01.2017
Autor: kobold123

Aufgabe
Skizzieren sie die Niveaulinien zu bel. Niveaus [mm] \alpha: [/mm]
f(x,y) = [mm] \bruch{x+y}{(x+1-y)^{2}+1+2*x*y} [/mm]

Guten Abend

Zunächst:

[mm] \alpha [/mm] = f(x,y)

[mm] \alpha [/mm] * [mm] [(x+1-y)^{2}+1+2*x*y] [/mm] = x + y

[mm] x^{2}+2*x+y^{2}-2*y+2 [/mm] = [mm] \bruch{x}{\alpha} [/mm] + [mm] \bruch{y}{\alpha} [/mm]

[mm] (x+1)^{2} [/mm] + [mm] (y-1)^{2} [/mm] = [mm] \bruch{x}{\alpha} [/mm] + [mm] \bruch{y}{\alpha} [/mm]

Kreis(e) mit Mittelpunkt (-1;1) und Radius [mm] \wurzel{\bruch{x+y}{\alpha}} [/mm]

und für [mm] \alpha [/mm] = 0 ist x+y = 0 <=> y = -x.

An dieser Stelle komme ich nicht mehr weiter, da ich jetzt zum Beispiel für [mm] \alpha [/mm] = 1 für den Radius [mm] \wurzel{x+y} [/mm] erhalten würde, aber nicht weiß wie ich das jetzt einzeichnen soll. Also mir feheln konkrete Werte zum skizzieren.

Vielen Dank schon mal für eure Hilfe.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Lg
  


        
Bezug
Niveaumengen, Niveaulinien: Antwort
Status: (Antwort) fertig Status 
Datum: 10:36 So 15.01.2017
Autor: Diophant

Hallo,

> Skizzieren sie die Niveaulinien zu bel. Niveaus [mm]\alpha:[/mm]
> f(x,y) = [mm]\bruch{x+y}{(x+1-y)^{2}+1+2*x*y}[/mm]
> Guten Abend

>

> Zunächst:

>

> [mm]\alpha[/mm] = f(x,y)

>

> [mm]\alpha[/mm] * [mm][(x+1-y)^{2}+1+2*x*y][/mm] = x + y

>

> [mm]x^{2}+2*x+y^{2}-2*y+2[/mm] = [mm]\bruch{x}{\alpha}[/mm] +
> [mm]\bruch{y}{\alpha}[/mm]

>

> [mm](x+1)^{2}[/mm] + [mm](y-1)^{2}[/mm] = [mm]\bruch{x}{\alpha}[/mm] +
> [mm]\bruch{y}{\alpha}[/mm]

>

> Kreis(e) mit Mittelpunkt (-1;1) und Radius
> [mm]\wurzel{\bruch{x+y}{\alpha}}[/mm]

>

> und für [mm]\alpha[/mm] = 0 ist x+y = 0 <=> y = -x.

>

Das ist ja auch überhaupt nicht zielführend, so lange die Gleichung nicht nach y aufgelöst wird.

Anmerkung:
Deine obige Rechnung ist korrekt.

Gehen wir von einem gemeinsamen Stand aus und nehmen

[mm] \frac{x+y}{(x+1)^2+(y-1)^2}=\alpha[/mm]

Das ist schnell umgeformt zu

[mm]\alpha*(y-1)^2-y=x-\alpha*(x+1)^2[/mm]

Und das musst du jetzt vollends nach y auflösen (Achtung: Fallunterscheidung nicht vergessen!).


Gruß, Diophant

Bezug
        
Bezug
Niveaumengen, Niveaulinien: Antwort
Status: (Antwort) fertig Status 
Datum: 11:50 So 15.01.2017
Autor: HJKweseleit


> Skizzieren sie die Niveaulinien zu bel. Niveaus [mm]\alpha:[/mm]
>  f(x,y) = [mm]\bruch{x+y}{(x+1-y)^{2}+1+2*x*y}[/mm]
>  Guten Abend
>  
> Zunächst:
>  
> [mm]\alpha[/mm] = f(x,y)
>  
> [mm]\alpha[/mm] * [mm][(x+1-y)^{2}+1+2*x*y][/mm] = x + y
>  
> [mm]x^{2}+2*x+y^{2}-2*y+2[/mm] = [mm]\bruch{x}{\alpha}[/mm] +
> [mm]\bruch{y}{\alpha}[/mm]
>  
> [mm](x+1)^{2}[/mm] + [mm](y-1)^{2}[/mm] = [mm]\bruch{x}{\alpha}[/mm] +  [mm]\bruch{y}{\alpha}[/mm]





Setze u=x+1 und v=y-1. Damit erhältst du

[mm]u^{2}[/mm] + [mm]v^{2}[/mm] = [mm]\bruch{u-1}{\alpha}[/mm] +  [mm]\bruch{v+1}{\alpha}[/mm]= [mm]\bruch{u}{\alpha}[/mm] +  [mm]\bruch{v}{\alpha}[/mm]

Nun fasst du die us und vs zusammen (quadratische Ergänzung):

[mm]u^{2}[/mm] - [mm]\bruch{u}{\alpha}[/mm] + [mm]\bruch{1}{4\alpha^2}[/mm] + [mm]v^{2}[/mm] - [mm]\bruch{v}{ \alpha}[/mm] + [mm]\bruch{1}{4\alpha^2}[/mm] = [mm]\bruch{1}{2\alpha^2}[/mm]

[mm] (u-\bruch{1}{2\alpha})^2 [/mm] + [mm] (v-\bruch{1}{2\alpha})^2 [/mm] = [mm] \bruch{1}{2\alpha^2} [/mm]

Du erhältst somit Kreise mit dem Mittelpunkt [mm] (u|v)=(\bruch{1}{2\alpha}|\bruch{1}{2\alpha}), [/mm] also [mm] (x+1|y-1)=(\bruch{1}{2\alpha}|\bruch{1}{2\alpha}), [/mm] also [mm] (x|y)=(\bruch{1}{2\alpha}-1|\bruch{1}{2\alpha}+1) [/mm] und dem Radius [mm] (u|v)=\bruch{1}{\wurzel{2}\alpha} [/mm]

Für die Mittelpunkte [mm] (x|y)=(\bruch{1}{2\alpha}-1|\bruch{1}{2\alpha}+1) [/mm] gilt: y-x=2, sie liegen also alle auf der Geraden mit y=x+2.

Im u-v-Koordinatensystem erkennt man, dass alle Kreise durch (0|0) gehen:

[mm] (0-\bruch{1}{2\alpha})^2 [/mm] + [mm] (0-\bruch{1}{2\alpha})^2 [/mm] = [mm] \bruch{1}{2\alpha^2}. [/mm]

Also gehen im x-y-Koordinatensystem alle Kreise durch (-1|1).





Bezug
                
Bezug
Niveaumengen, Niveaulinien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:30 So 15.01.2017
Autor: kobold123

Vielen Dank für die schnellen Antworten.

Bezug
                
Bezug
Niveaumengen, Niveaulinien: Nachtrag
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:52 So 15.01.2017
Autor: HJKweseleit


>  Also gehen im x-y-Koordinatensystem alle Kreise durch (-1|1).

  

Da  der gemeinsame Punkt (-1|1) ebenfalls auf der Geraden mit y=x+2 liegt, auf der die Mittelpunkte liegen, fallen alle Radien, die von den Mittelpunkten zum gemeinsamen Punkt (-1|1) führen, aufeinander. Das bedeutet, dass alle Kreise in (-1|1) eine gemeinsame Tangente haben (y = - x ) und sich in (-1|1) nur berühren.

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de