www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Nochmal Nullstellenbestimmung!
Nochmal Nullstellenbestimmung! < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nochmal Nullstellenbestimmung!: Dringende Frage !!
Status: (Frage) beantwortet Status 
Datum: 16:08 So 03.04.2005
Autor: steph

Hallo,
folgende Frage, mir geht es darum ob die Schreibweise und a<0, a>0...usw. richtig ist...

f(x) = (x+2a) [mm] (x^2+ \bruch{15}{2}x-4) [/mm]

x1= -2a einfach

x2/3 = 0,5 und -8 jeweils einfach

a=0
3 Nullstellen
x1=0
x2= 0,5 einfach
x3= -3 einfach

a>0  - a  [mm] \not= [/mm] 4
3 Nullstellen
x1= -2a einfach
x2= 0,5 einfach
x3= -8 einfach

a<0 - a  [mm] \not= [/mm] -1/4
3 Nullsetllen x1 = -2a
x2= 0,5
x3= -8

a= 4
2 Nullstellen
x1= 0,5 einfach
x2= -8 doppelt

a= -1/4
2 Nullstellen
x1= 0,5 doppelt
x2= -8 einfach

Oder schreibt man das ganze SO:

Es gibt 3 Nullstellen:

x1=-2a einfach
x2= 0,5
x3= -8 einfach

und a  [mm] \not\in [/mm] IR \ {-1/4;4}

WAS IST NUN BESSER BZW. KORREKTER ??? DAS OBIGE ODER UNTERE !!

Wenn ich das in einer Klausur schreibe, was würdet ihr besser bewerten...

DANKE schonmal

lg

steph

        
Bezug
Nochmal Nullstellenbestimmung!: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 So 03.04.2005
Autor: mathrix

Hi,

ich würde hier einfach schreiben:

für a  [mm] \not= [/mm] -1/4   [mm] \wedge [/mm] a  [mm] \not= [/mm] 4 gibt es 3 Lösungen: L =  [mm] \{-2a; 0,5; -8 \} [/mm]
für a = -1/4 gibt es 2 Lösungen: L =  [mm] \{ 0,5; -8 \} [/mm] wobei x=0,5 eine doppelte Nullstelle ist
für a = 4 gibt es dieselben 2 Lösungen, jedoch ist diesmal nicht 0,5 sondern -8 die doppelte Nullstelle.

Schönen Sonntag abend noch,

mathlee

Bezug
                
Bezug
Nochmal Nullstellenbestimmung!: Wer kann noch helfen ???
Status: (Frage) beantwortet Status 
Datum: 16:58 So 03.04.2005
Autor: steph

Danke mathrix schonmal, aber warum berechnest du gar nicht a=0 z.B. ????

Was würdest du sagen, wäre das was ich geschrieben habe auch richtig ??

Wer ansonsten noch helfen kann, wäre super !!!!!

gruss
steph

Bezug
                        
Bezug
Nochmal Nullstellenbestimmung!: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 So 03.04.2005
Autor: Christian


> Danke mathrix schonmal, aber warum berechnest du gar nicht
> a=0 z.B. ????
>  
> Was würdest du sagen, wäre das was ich geschrieben habe
> auch richtig ??

Richtig schon, ja.
Warum man a=0 nicht betrachten muß:
Man muß ja allgemein nur die Fälle betrachten, die irgendwie besonders sind.
Eintreten können ja nur die Fälle 2 Nullstellen (eine doppelt) und 3 Nullstellen (alle einfach).
Letzteres tritt immer ein, außer wenn x eben 4 oder -0,25 ist.
Warum also nochmal den Fall a=0 betrachten?!?

Gruß,
Christian


Bezug
                        
Bezug
Nochmal Nullstellenbestimmung!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 So 03.04.2005
Autor: mathrix

Hi,

ich sehe keinen Sinn darin für a = 0 oder andere a weitere Nullstellen zu berechnen, wenn ich sie auch in Abhängigkeit von a angeben kann. Bei deiner "untere"n Schreibweise unterschlägst du, dass es auch Werte für a gibt, bei denen es eben nur 2 Nullstellen (ob jetzt doppelt oder einfach) gibt, deswegen würde ich die als nicht vollständig ansehen. Mir kommt bei dem ganzen irgendwie das Wort Fallunterscheidung in den Kopf (weiss aber nicht, ob es in diesem Zusammenhang richtig ist): Fall1: 2 Nullstellen: L = [mm] \{0,5;-8\} [/mm] a  [mm] \in \{ -1/4; 4 \}, [/mm] Fall2: 3 Nullstellen: L = [mm] \{-2a;0,5;-8\} [/mm] a [mm] \in \IR \setminus \{ -1/4; 4 \} [/mm]

Am Anfang solltest du vielleicht noch schreiben [mm] (x+2a)(x^2+7,5x-4)=0 [/mm] bzw. faktorisiert: (x+2a)(x-0,5)(x+8)=0 (wobei ich das letztere besser finde, du jedoch aufpassen musst, dass du nichts vergisst (Beispiel: [mm] 2x^2+15x-8 \not= [/mm] (x-0,5)(x+8) sondern [mm] 2x^2+15x-8 [/mm] = 2(x-0,5)(x+8))).

Deine obere Schreibweise kommt mir etwas ausführlich vor, aber falsch ist sie nicht.


Schönen, sonnigen Sonntag,

mathrix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de