www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Normale-Beweisaufgabe
Normale-Beweisaufgabe < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normale-Beweisaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:50 So 19.10.2008
Autor: Theoretix

Aufgabe
Gegeben ist die Funktion f mit f(x)= [mm] \wurzel{25-x^{2}} [/mm]
Zeigen Sie, dass die Normale in einem beliebigen Punkt P(a/f(a)) durch den Ursprung geht!


Hallo zusammen,
Man weiß ja, dass die Normalensteigung:
[mm] -\bruch{1}{f '(x)} [/mm] ist!?
Jetzt weiß ich aber nicht mehr genau wie man diesen Term ableitet!?
Wie lässt sich der beliebig gewählte Punkt ausdrücken und warum?
Dann müsste ich den x/y Wert des Punktes in Y=mx+c einsetzen uns sollte für c 0 rausbekommen,
aber der Weg dorthin ist mir noch nicht so ganz klar=)
Wär nett, wenn mir schnell jemand helfen könnte!
MFG

        
Bezug
Normale-Beweisaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 So 19.10.2008
Autor: Adamantin


> Gegeben ist die Funktion f mit f(x)= [mm]\wurzel{25-x^{2}}[/mm]
>  Zeigen Sie, dass die Normale in einem beliebigen Punkt
> P(a/f(a)) durch den Ursprung geht!
>  
>
> Hallo zusammen,
>  Man weiß ja, dass die Normalensteigung:
>  [mm]-\bruch{1}{f '(x)}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

ist!?

>  Jetzt weiß ich aber nicht mehr genau wie man diesen Term
> ableitet!?
>  Wie lässt sich der beliebig gewählte Punkt ausdrücken und
> warum?
>  Dann müsste ich den x/y Wert des Punktes in Y=mx+c
> einsetzen uns sollte für c 0 rausbekommen,
>  aber der Weg dorthin ist mir noch nicht so ganz klar=)
>  Wär nett, wenn mir schnell jemand helfen könnte!
>  MFG

Zur Ableitung:

$ f(x)=\wurzel{25-x^{2}}=(25-x^2)^{\bruch{1}{2}} $

$ f'(x)=\bruch{1}{2}*(25-x^2)^{-\bruch{1}{2}}*(-2x)=-\bruch{x}{\wurzel{25-x^2} $

Damit ergibt sich für die Steigung m_n der normalen:

$ m_n=-\bruch{1}{f '(x)}=-\bruch{1}{-\bruch{x}{\wurzel{25-x^2}}}=+\bruch{\wurzel{25-x^2}}{x} $

Nun haben wir also die Normalengleichung:

$ n(x)=\bruch{\wurzel{25-x^2}}{x}*x+b $

Nun setzen wir den geforderten beliebigen Punkt $ P(a/f(a)) = P(a/ \wurzel{25-a^2}) $ ein:

$ n(a)=\bruch{\wurzel{25-a^2}}{a}*a+b= \wurzel{25-a^2} $

Daraus folgt: b=0

Damit geht n(x) durch O

Bezug
                
Bezug
Normale-Beweisaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 So 19.10.2008
Autor: Theoretix

Vielen Dank für die schnelle Antwort, hab's jetzt verstanden=)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de