Normalgebiet < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 11:47 Fr 25.06.2004 | Autor: | Harry |
Oh je, oh je, oh je! Wenn man HM hört, sollte man nicht krank werden. Vorallem nicht, wenn's kein Skript gibt und keiner mitschreibt
Ich war jetzt ne Woche krank, hab dadurch zwei Vorlesungen verpasst und als ich mir jetzt grade das aktuellen Hausaufgabenblatt angeschaut habe, hab' ich nur Bahnhof verstanden. Leider steht auch in meinem Mathebuch dazu nichts...
------------------------------------------------
Hier ist die Aufgabe:
Sei [mm]B \, \subseteq \; \mathbb{R}^3[/mm] ein Normalgebiet mit Volumen [mm]V \, = \, \int \int \int_B \, dx_3 dx_2 dx_1[/mm]. Der Schwerpunkt [mm](x^s_1, x^s_2, x^s_3)[/mm] von B (bei homogener Massenverteilung) ist gegeben durch
[mm]x^s_1 \, = \, \frac{1}{V} \int \int \int_B x_1 dx_3 dx_2 dx_1,\\
x^s_2 \, = \, \frac{1}{V} \int \int \int_B x_2 dx_3 dx_2 dx_1,\\
x^s_3 \, = \, \frac{1}{V} \int \int \int_B x_3 dx_3 dx_2 dx_1,\\
[/mm]
Wir betrachten den durch die Koordinatenebene x = 0, y = 0, z = 0 sowie den Ebenen 3x + y = 6 und 6x + 3y +4z = 24 begrenzten räumlichen Bereich B. Zeigen Sie, dass B ein Normalgebiet ist, skizzieren Sie B und berechnen Sie seinen Schwerpunkt.
------------------------------------------------
Ich hab nicht die leiseste Ahnung von da die Rede ist und wie man so eine Aufgabe lösen kann. Ich weiß, es ist viel verlangt, aber kann mir das jemand erklären? Vielen vielen Dank!
HINWEIS: Ich habe diese Frage schon in einem anderen Forum gepostet, dort aber auch nach mehreren Tagen keine Antwort bekommen. Wenn das gegen die cross-posting Regeln verstößt tut mir das leid. Ich bin nur etwas verzweifelt weil ich mit der Aufgabe ohne Hilfe einfach nicht weiterkomme.
http://www.matheboard.de/thread.php?threadid=4562
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:17 Fr 25.06.2004 | Autor: | Julius |
Hallo!
Es geht nicht um das Posten in mehreren Foren, sondern darum, dass man in allen Foren, in denen man die gleiche Frage gestellt hat, jeweils einen Link auf die anderen Foren setzt. Hole dies bitte umgehend nach, sonst werde ich keine weiteren Fragen mehr beantworten.
Wie habt ihr ein Normalgebiet definiert?
Ansonsten musst du, denke ich, einfach die iterierten Integrale ausrechnen, etwa dieses:
$V = [mm] \int_0^{\infty} \int_0^{\max\{6-3x_1,0\}} \int_0^{\max\{6-\frac{3}{2}x_1 - \frac{3}{4}x_2,0\}} dx_3 dx_2 dx_1$.
[/mm]
Versuchst du das bitte mal?
Wir kontrollieren dein Ergebnis dann. Man besten du untersuchst erst einmal, wann die jeweiligen Integrationsgrenzen nichtnegativ sind und spaltest das Integral dann auf.
Oder, Frage an die anderen Tutoren, bin ich hier völlig auf dem Holzweg??
Liebe Grüße
Julius
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:56 Fr 25.06.2004 | Autor: | Harry |
Okay, ich hab den ursprünglichen Post geändert und einen Link zum anderen Forum eingefügt.
Vielen Dank für den Hinweis und für den Tipp. Ich kann dir leider nicht sagen, wie wir ein Normalgebiet definiert haben, da ich diese Vorlesung verspasst habe und es bei uns leider kein Skript gibt.
Ich werd deinen Ansatz mal versuchen und wenn ich Probleme hab', melde ich mich nochmal.
Nochmals vielen DanK!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 03:55 Sa 26.06.2004 | Autor: | Marc |
Hallo,
weiteres Cross-Posting:
Entweder, dein Ultra-Kurzzeit-Gedächtnis ist defekt (die Nachricht ist 5 Minuten vor dem Artikel auf MatheRaum gepostet worden), oder aber es handelt sich hier um einen schlechten Scherz eines Dritten.
http://www.emath.de/Mathe-Board/messages/8/8106.html?1088190214
Marc
|
|
|
|