www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Normalte. in $p$ - Sylowgruppe
Normalte. in $p$ - Sylowgruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalte. in $p$ - Sylowgruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:04 Sa 09.05.2020
Autor: teskiro

Aufgabe
Sei $p$ prim und $N$ ein Normalteiler mit $|N|= p$ in einer endlichen Gruppe $G$.

Zeigen Sie, dass $N$ in jeder $p$ - Sylowgruppe von $G$ enthalten ist.

Guten Abend, ich knabbere zurzeit an der oben gestellten Aufgabe, da ich ab einer gewissen Stelle nicht weiter komme.

Ich hoffe, mir kann einer helfen :)


Mein Ansatz ist bis jetzt:


In der Vorlesung haben wir diese zwei Sätze behandelt:



Satz 1
______


Sei $H [mm] \subset [/mm] G$ eine $p$ - Gruppe, $S$ eine $p$ - Sylowgruppe von $G$.

Ist $H$ im Normalisator [mm] $N_{G}(S)$ [/mm] enthalten, so gilt schon $H [mm] \subset [/mm] S$.


Definition von [mm] $N_{G}(S)$ [/mm]
______________________


Sei $G$ eine Gruppe und $S$ eine Untergruppe.

Wir nennen dann die Menge [mm] $N_{G}(S) [/mm] := [mm] \{ g \in G\; \vert \; g S g^{- 1} = S \}$ [/mm] den Normalisator von $S$.


Satz 2
______


Sei $U [mm] \subset [/mm] G$ eine $p$ - Sylowgruppe und  $H [mm] \subset [/mm] G$ eine $p$ - Gruppe.

Dann existiert ein $g [mm] \in [/mm] G$ mit $H [mm] \subset [/mm] g U [mm] g^{- 1}$ [/mm] und [mm] $gUg^{- 1}$ [/mm] ist auch eine $p$ - Sylowgruppe.



Ich habe mir dann gedacht:



Nach Voraussetzung ist $N$ ein Normalteiler von $G$, also ist $N$ eine Untergruppe von $G$.

Außerdem gilt, nach Voraussetzung, noch [mm] $\vert [/mm] N [mm] \vert [/mm] = p$.

Also ist $N$ eine $p$ - Untergruppe von $G$.



(Frage: Kann man hier schon sagen, dass es eine $p$ - Sylowgruppe von $G$ gibt ? Falls ja, warum ?)



Sei $S$ eine beliebige $p$ - Sylowgruppe von $G$.


Meine Idee war nun, den Satz 1 ins Spiel zu bringen.


Wenn ich also zeigen kann, dass $N [mm] \subset N_{G}(S)$ [/mm] gilt, dann gilt schon $N [mm] \subset [/mm] S$. Und da ich eine beliebige $p$ - Sylowgruppe gewählt habe, gilt dann die Aussage
für alle $p$ - Sylowgruppen.




Sei also $n [mm] \in [/mm] N$ und $s [mm] \in [/mm] S$.

Nach Satz 2 folgt, dass es ein $g [mm] \in [/mm] G$ gibt, so dass $N [mm] \subset gSg^{- 1}$ [/mm] gilt. Außerdem ist [mm] $gSg^{- 1}$ [/mm] eine $p$ - Sylowgruppe.


Das heißt, dass $n$ sich in der Form $n = g s' [mm] g^{-1 }$ [/mm] für ein geeignetes $s' [mm] \in [/mm] S$ darstellen lässt.


Wir haben dann:


$n s [mm] n^{- 1} [/mm] = g s' [mm] g^{-1 } [/mm] s [mm] \left ( g s' g^{-1 } \right [/mm] ) = g s' [mm] g^{-1 } [/mm] s g (g [mm] s')^{- 1} [/mm] = g s' [mm] g^{-1 } [/mm] s g s'^{- 1} [mm] g^{- 1}$ [/mm]



Ab hier komme ich nicht weiter, da ich nicht weiß, ob ich die Elemente vertauschen darf.

Kann mir jemand einen Tipp geben ?

Und ist mein Ansatz an dieser Stelle sinnvoll, bzw. komme ich damit zum Ziel ?



Freue mich über euer Feedback.


lg, Tim

        
Bezug
Normalte. in $p$ - Sylowgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:23 So 10.05.2020
Autor: statler


> Sei [mm]p[/mm] prim und [mm]N[/mm] ein Normalteiler mit [mm]|N|= p[/mm] in einer
> endlichen Gruppe [mm]G[/mm].
>  
> Zeigen Sie, dass [mm]N[/mm] in jeder [mm]p[/mm] - Sylowgruppe von [mm]G[/mm] enthalten
> ist.

Guten Morgen!

Geht das nicht mit

> Satz 2
>  ______
>  
>
> Sei [mm]U \subset G[/mm] eine [mm]p[/mm] - Sylowgruppe und  [mm]H \subset G[/mm] eine
> [mm]p[/mm] - Gruppe.
>
> Dann existiert ein [mm]g \in G[/mm] mit [mm]H \subset g U g^{- 1}[/mm] und
> [mm]gUg^{- 1}[/mm] ist auch eine [mm]p[/mm] - Sylowgruppe.
>  

ganz einfach?

$N$ ist nach Voraussetzung eine p-Gruppe und daher gilt mit einem geeigneten $g [mm] \in [/mm] G$ [mm]N \subset g U g^{- 1}[/mm], also $N = [mm] g^{-1}Ng \subset [/mm] U$.

Gruß Dieter

Bezug
                
Bezug
Normalte. in $p$ - Sylowgruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:23 So 10.05.2020
Autor: teskiro

Guten Morgen :-)


Danke für deine Antwort, denn jetzt ist mir die Lösung klar!



$N$ ist nach Voraussetzung eine $p$ - Gruppe.

Sei $n [mm] \in [/mm] N$.

Wir müssen zeigen, dass $n [mm] \in [/mm] U$.

Nach Satz 2 existiert ein $g [mm] \in [/mm] G$ mit $N [mm] \subset [/mm] g U [mm] g^{- 1}$. [/mm]


Nach Voraussetzung ist $N$ ein Normalteiler von $G$, d.h. es gilt $g n [mm] g^{- 1} \in [/mm] N$.

Also ist $g n [mm] g^{- 1} \in [/mm] g U [mm] g^{- 1}$. [/mm]

Das Element $g n [mm] g^{- 1}$ [/mm] hat also die Form $g n [mm] g^{- 1} [/mm] = g u' [mm] g^{- 1}$ [/mm] für ein geeignetes $u ' [mm] \in [/mm] U$.

Daraus folgt sofort, dass $ n = u'$ ist.

Da $n$ beliebig gewählt wurde, gilt $N [mm] \subset [/mm] U$.


Ist die Begründung so stimmig?


Lg, Tim





Bezug
                        
Bezug
Normalte. in $p$ - Sylowgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 So 10.05.2020
Autor: statler

Hi!
>
> Danke für deine Antwort, denn jetzt ist mir die Lösung
> klar!
>  

Sehr schön!

>
> [mm]N[/mm] ist nach Voraussetzung eine [mm]p[/mm] - Gruppe.
>  
> Sei [mm]n \in N[/mm].
>

Genauer: Wir müssen zeigen, dass gilt: [mm] \exists [/mm] p-Sylow-Untergruppe U: [mm] \forall [/mm] n [mm] \in [/mm] N: [mm]n \in U[/mm].

>  
> Nach Satz 2 existiert ein [mm]g \in G[/mm] mit [mm]N \subset g U g^{- 1}[/mm].
>  
> Nach Voraussetzung ist [mm]N[/mm] ein Normalteiler von [mm]G[/mm], d.h. es gibt ein g [mm] \in [/mm] G, so daß  
> gilt [mm] \forall [/mm] n [mm] \in [/mm] N [mm]g n g^{- 1} \in N[/mm].
>  
> Also ist [mm]g n g^{- 1} \in g U g^{- 1}[/mm].
>  
> Das Element [mm]g n g^{- 1}[/mm] hat also die Form [mm]g n g^{- 1} = g u' g^{- 1}[/mm]
> für ein geeignetes [mm]u ' \in U[/mm].
>
> Daraus folgt sofort, dass [mm]n = u'[/mm] ist.
>  
> Da [mm]n[/mm] beliebig gewählt wurde, gilt [mm]N \subset U[/mm].
>  
> Ist die Begründung so stimmig?

Für mich wäre sie zu kleinschrittig und der Hinweis aus meiner ersten Antwort sollte reichen, aber das hängt vom Vorwissen insbesondere des Lesers ab.

(Wenn du in einer Gruppe 2 Teilmengen A und B hast, dann gilt $A [mm] \subset [/mm] B [mm] \gdw \exists [/mm] x [mm] \in [/mm] G [mm] \; xAx^{-1} \subset xBx^{-1} \gdw \forall [/mm] x [mm] \in [/mm] G [mm] \; xAx^{-1} \subset xBx^{-1}$. [/mm] Das kann man glaube ich voraussetzen.)


Gruß Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de