www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Normalteiler
Normalteiler < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:36 Mo 26.10.2009
Autor: side

Aufgabe
Sei [mm] (G,\*) [/mm] eine Gruppe und H, H' [mm] \subsetG [/mm] Untergruppen. Zeigen Sie:
Ist H ein Normalteiler, so ist [mm] HH':=\{g\in G|g=h\*h' mit\; h\in H, h'\in H'\} [/mm] eine Untergruppe von G mit Normalteiler H und es gilt HH'=H'H.
Kann man die Bedingung H Normalteiler auch weglassen?

Als Indiz für Untergruppe würde ich hier versuchen zu zeigen, dass für [mm] a,b\in\; [/mm] HH' gilt: [mm] ab^{-1}\in\; [/mm] HH'.
Wie zeige ich, dass H Normalteiler dieser Gruppe ist?
Ich denke mal, dass man die Bedingung H Normalteiler von G nicht weglassen darf. Ich denke dass ich beim zwieten Teil der Frage sonst Probleme hätte, oder?

        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 09:28 Di 27.10.2009
Autor: felixf

Hallo!

> Sei [mm](G,\*)[/mm] eine Gruppe und H, H' [mm]\subsetG[/mm] Untergruppen.
> Zeigen Sie:
>  Ist H ein Normalteiler, so ist [mm]HH':=\{g\in G|g=h\*h' mit\; h\in H, h'\in H'\}[/mm]
> eine Untergruppe von G mit Normalteiler H und es gilt
> HH'=H'H.
>  Kann man die Bedingung H Normalteiler auch weglassen?
>
>  Als Indiz für Untergruppe würde ich hier versuchen zu
> zeigen, dass für [mm]a,b\in\;[/mm] HH' gilt: [mm]ab^{-1}\in\;[/mm] HH'.

Ja. Du kannst $a, b$ schreiben als $a = [mm] a_1 a_2$, [/mm] $b = [mm] b_1 b_2$ [/mm] mit [mm] $a_1, b_1 \in [/mm] H$, [mm] $a_2, b_2 \in [/mm] H'$. Beachte jetzt noch, dass $H'$ ein Normalteiler ist. (Das brauchst du hier zwingend.)

>  Wie zeige ich, dass H Normalteiler dieser Gruppe ist?

Na, was musst du denn zeigen dafuer?

>  Ich denke mal, dass man die Bedingung H Normalteiler von G
> nicht weglassen darf.

Ja.

> Ich denke dass ich beim zwieten Teil
> der Frage sonst Probleme hätte, oder?

Ja.

LG Felix


Bezug
                
Bezug
Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 Di 27.10.2009
Autor: side

ok, ich erhalte dann [mm] (a_1\*\;a_2)\*\;(b_1 \*\;b_2)^{-1} [/mm] = [mm] (a_1\*\;a_2)\*\;(b_2^{-1}\*b_1^{-1}) [/mm]
das würde ich jetzt gerne so umformen, dass ich erhalte:
[mm] (a_1\*\;b_1)\*(a_2\*\;b_2) \;\;\; (\*) [/mm]
Die Klammern sind dann jeweils in H bzw H' also das ganze in HH' und ich habe gezeigt, dass HH' eine Untergruppe ist. Aber wie komm ich zu [mm] (\*)? [/mm]

Bezug
                        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Di 27.10.2009
Autor: felixf


> ok, ich erhalte dann [mm](a_1\*\;a_2)\*\;(b_1 \*\;b_2)^{-1}[/mm] =
> [mm](a_1\*\;a_2)\*\;(b_2^{-1}\*b_1^{-1})[/mm]

[ok]

>   das würde ich jetzt gerne so umformen, dass ich
> erhalte:
>  [mm](a_1\*\;b_1)\*(a_2\*\;b_2) \;\;\; (\*)[/mm]

Fuer ganz spezielle Gruppen bzw. Wahlen von [mm] $a_1, a_2, b_1, b_2$ [/mm] geht dies. Im Allgemeinen ist dies verschieden von [mm] $(a_1 [/mm] * [mm] a_2) [/mm] * [mm] (b_1 [/mm] * [mm] b_2)^{-1}$. [/mm]

> Aber wie komm ich zu [mm](\*)?[/mm]  

Gar nicht.

Du musst anders vorgehen.

Beachte doch, dass $H$ ein Normalteiler ist; damit ist $g H = H g$ fuer alle $g [mm] \in [/mm] G$. Was passiert mit $g = [mm] a_2 b_2^{-1}$ [/mm] und [mm] $b_1^{-1} \in [/mm] H$?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de