www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Normalteiler
Normalteiler < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalteiler: Lösungstipps
Status: (Frage) beantwortet Status 
Datum: 12:22 Fr 17.12.2010
Autor: Freaky

Aufgabe
Seien G eine Gruppe und U c G eine Teilmenge. Untersuchen Sie, ob U ein
Normalteiler von G ist, falls U und G wie folgt gegeben sind:
(a) G = Z, U = {1, -1};
(b) G = Sn, U = {sigma|sigma(1) = 1} für ein n>=2 (Sn= symmetrische Gruppe);
(c) G ist eine beliebige Gruppe und U = f^-1(N) für einen Gruppenhomomorphismus f : G-> H und einen Normalteiler N von H.

Hallihallo,
ich bräuchte etwas Hilfe bei der obigen Aufgabe.
Bei der (a) vermute ich, dass U Normalteiler ist, aber bei den anderen beiden habe ich keine Ahnung, wie ich das angehen soll. Kann mir vielleicht jemand einen Lösungsansatz geben?
Liebe Grüße, Freaky

        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Fr 17.12.2010
Autor: wieschoo


> Seien G eine Gruppe und U c G eine Teilmenge. Untersuchen
> Sie, ob U ein
>  Normalteiler von G ist, falls U und G wie folgt gegeben
> sind:
>  (a) G = Z, U = {1, -1};
>  (b) G = Sn, U = {sigma|sigma(1) = 1} für ein n>=2 (Sn=
> symmetrische Gruppe);
>  (c) G ist eine beliebige Gruppe und U = f^-1(N) für einen
> Gruppenhomomorphismus f : G-> H und einen Normalteiler N
> von H.
>  Hallihallo,
> ich bräuchte etwas Hilfe bei der obigen Aufgabe.
> Bei der (a) vermute ich, dass U Normalteiler ist, aber bei

Ist [mm] z=$\IZ$ [/mm] ??Eine gute Vermutung.
Un jetzt benutzt du eine Definition.
Für den Normalteiler gibt es drei äquivalente Eigenschaften. DU brauchst nur zeigen: [mm] $\forall g\in G\;\; gUg^{-1}\subseteq [/mm] U$.

> den anderen beiden habe ich keine Ahnung, wie ich das
> angehen soll. Kann mir vielleicht jemand einen
> Lösungsansatz geben?
> Liebe Grüße, Freaky

Das geht genauso. Du musst mit den Definitionen arbeiten.


Bezug
                
Bezug
Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Fr 17.12.2010
Autor: Freaky

Danke für die Hilfe! Bei (a) und (b) habe ich jetzt als Lösung, dass es keine Normalteiler sind, aber bei (c) komme ich irgendwie immer noch nicht weiter...

Bezug
                        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Fr 17.12.2010
Autor: felixf

Moin!

> Danke für die Hilfe! Bei (a) und (b) habe ich jetzt als
> Lösung, dass es keine Normalteiler sind,

Genau. Bei (a) ist es ja nichtmals eine Untergruppe!

> aber bei (c)
> komme ich irgendwie immer noch nicht weiter...

Also bei (c) ist es immer ein Normalteiler. Du musst jetzt mal rechnen. Zeige zuerst, dass [mm] $f^{-1}(N)$ [/mm] eine Untergruppe ist. Das ist einfach, so aehnlich wie man etwa zeigt, dass der Kern von $f$ eine Untergruppe von $G$ ist.

Und ebenso zeigt man, dass [mm] $f^{-1}(N)$ [/mm] ein Normalteiler ist: dazu muss man doch [mm] $g^{-1} f^{-1}(N) [/mm] g [mm] \subseteq f^{-1}(N)$ [/mm] zeigen. Zeige dazu, dass [mm] $g^{-1} f^{-1}(N) [/mm] g = [mm] f^{-1}(f(g)^{-1} [/mm] N g)$ ist.

LG Felix


Bezug
                                
Bezug
Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 So 19.12.2010
Autor: katrin10

Hallo,

warum ist es denn (b) kein Normalteiler? Da U eine triviale Untergruppe von G ist, dachte ich, dass U Normalteiler von G ist.
Bei der (c) habe ich gezeigt, dass U eine Untergruppe von G ist und möchte nun zeigen, dass [mm] g^{-1} f^{-1}(N) [/mm] g [mm] \subseteq f^{-1}(N) [/mm] gilt. Allerdings bin ich mir nicht sicher, wie ich dabei vorgehen soll.
Kann mir jemand bitte einen Lösungstipp geben?
Vielen Dank und viele Grüße
Katrin



Bezug
                                        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 18:44 So 19.12.2010
Autor: felixf

Moin Katrin!

> warum ist es denn (b) kein Normalteiler? Da U eine triviale
> Untergruppe von G ist, dachte ich, dass U Normalteiler von
> G ist.

Wieso sollte $U$ eine triviale Untergruppe (also [mm] $\{ id \}$ [/mm] oder $G$ selber) sein?! Das stimmt doch gar nicht, es sei denn $n = 2$.

> Bei der (c) habe ich gezeigt, dass U eine Untergruppe von G
> ist und möchte nun zeigen, dass [mm]g^{-1} f^{-1}(N)[/mm] g
> [mm]\subseteq f^{-1}(N)[/mm] gilt. Allerdings bin ich mir nicht
> sicher, wie ich dabei vorgehen soll.
> Kann mir jemand bitte einen Lösungstipp geben?

Nimm dir ein Element $x [mm] \in g^{-1} f^{-1}(N) [/mm] g$. Dann ist $x = [mm] g^{-1} [/mm] y g$ mit $f(y) [mm] \in [/mm] N$.

Jetzt musst du zeigen, dass $f(x) [mm] \in [/mm] N$ ist. Rechne das doch mal nach.

(Bisher habe ich nur die Definitionen eingesetzt, nichts weiter!)

LG Felix


Bezug
                                                
Bezug
Normalteiler: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 So 19.12.2010
Autor: katrin10

Hallo,

vielen Dank für die schnelle Antwort.

Warum id keine Untergruppe von [mm] S_n [/mm] ist, verstehe ich nicht. In der Vorlesung haben wir die Untergruppenkriterien überprüft und aufgeschrieben, dass U eine Untergruppe von [mm] S_n [/mm] (für ein [mm] \IN_{>0}) [/mm] ist.


Bei der (c) habe ich jetzt gerechnet:
[mm] f(g^{-1}yg)=f(g^{-1}) [/mm] f(y) f(g) [mm] \in f(g^{-1}) [/mm] N f(g)

Darf man nun die Faktoren vertauschen, sodass man folgendes erhält?

[mm] f(g^{-1}yg)\in f(g^{-1}) [/mm] f(g) N
-> [mm] f(g^{-1}yg)\in f(g^{-1}g) [/mm] N
-> [mm] f(g^{-1}yg)\in [/mm] N

Bezug
                                                        
Bezug
Normalteiler: Antwort
Status: (Antwort) fertig Status 
Datum: 08:17 Mo 20.12.2010
Autor: statler

Guten Morgen!

> Warum id keine Untergruppe von [mm]S_n[/mm] ist, verstehe ich nicht.
> In der Vorlesung haben wir die Untergruppenkriterien
> überprüft und aufgeschrieben, dass U eine Untergruppe von
> [mm]S_n[/mm] (für ein [mm]\IN_{>0})[/mm] ist.

Die Identität, genauer die Menge mit der Identität als einzigem Element, ist natürlich eine Untergruppe und auch ein NT. Aber hier steht in schlechtem Mathe-Speak

(b) G = Sn, U = {sigma|sigma(1) = 1} für ein n>=2 (Sn= symmetrische Gruppe);

Das soll wohl heißen: Sei n [mm] \ge [/mm] 2 und [mm] S_n [/mm] die symmetrische Gruppe auf den Zahlen von 1 bis n. U ist dann die Teilmenge derjenigen Permutationen, die 1 festlassen.

Nun ist das im Falle n = 2 auch noch ein NT, weil eine 2er-Permutation, die 1 festhält, automatisch auch 2 festhält, also = id ist.

Aber für n = 3 solltest du ein Gegenbeispiel finden können, was dann automatisch auch die Fälle n > 3 erledigt (Warum?).

Gruß aus HH-Harburg
Dieter


Bezug
                                                                
Bezug
Normalteiler: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:06 Di 21.12.2010
Autor: katrin10

Vielen Dank. Ich habe es verstanden.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de