www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Probability" - Normalverteilung
Normalverteilung < Probability < Probability/Statisti < Grades 11-12 < School < Maths <
View: [ threaded ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ all forums  | ^ Tree of Forums  | materials

Normalverteilung: Verständnis
Status: (Question) answered Status 
Date: 21:49 Fr 01/03/2019
Author: Mandy_90

Aufgabe
In 25 Jahren erhöhte sich die mittlere Größe männlicher Erwachsener von 175,8 cm auf 179,1 cm, während die Standardabweichung bei 5,84 cm blieb.
Die geforderte Mindestgröße bei Männern im Polizeidienst in England ist 172 cm. Nehmen Sie an, dasss die Größe männlicher Erwachsener durch eine Normalverteilung genügend gut approximiert wird.
Welcher Anteil Männer zu Beginn und am Ende der 25 jährigen Periode war zu klein , um in den Polizeidienst aufgenommen zu weredn ?

Hallo liebe Leute,

zu dieser Aufgabe habe ich bereits eine Musterlösung, verstehe sie jedoch nicht ganz. Es ist [mm] X_{1} \sim N(\mu_{1},(\delta_{1})^{2}), X_{2} \sim N(\mu_{2},(\delta_{2})^{2}). [/mm] Ich versteh nicht was das bedeutet, awofür steht diese Schreibweise und wie wird [mm] \sim [/mm] ausgesprochen ?

[mm] \mu_{1}=175,8, \mu_{2}=179,1, \delta_{1}=5,84, \delta_{2}=5,84 [/mm]
Das hab ich verstanden. Die Mindestgröße ist 172. Dann

[mm] P(X_{1} \le 172)=P(\bruch{X_{1}-175,8}{5,84}\le\bruch{-3,8}{5,84})=PHI(\bruch{-3,8}{5,84})=0,2578. [/mm]

Wie man das ausgerechnet hat, versteh ich nicht. Dass die Werte eingesetzt wurden sehe ich. Aber wie kommt man auf diese Rechnung ? Oder gibt es dazu eine allgemeine Formel ? Und wie genau rechnet man dieses PHI am Ende aus ?

Vielen Dank
Mandy_90



        
Bezug
Normalverteilung: Antwort
Status: (Answer) finished Status 
Date: 19:37 Sa 02/03/2019
Author: Gonozal_IX

Hiho,

dein Posting deutet darauf hin, dass dir rudimentäre Grundlagen fehlen.
Diese solltest du dringend nacharbeiten!
Deine Fragen sind alle, die in eurer Vorlesung garantiert behandelt wurden...

> Es ist [mm]X_{1} \sim N(\mu_{1},(\delta_{1})^{2}), X_{2} \sim N(\mu_{2},(\delta_{2})^{2}).[/mm]
> Ich versteh nicht was das bedeutet, awofür steht diese
> Schreibweise und wie wird [mm]\sim[/mm] ausgesprochen ?

Es bedeutet, dass [mm] $X_1$ [/mm] verteilt ist wie eine Normalverteilung mit den Parametern [mm] $\mu_1$ [/mm] und [mm] $\delta_1^2$. [/mm]

> Das hab ich verstanden. Die Mindestgröße ist 172. Dann
>  
> [mm]P(X_{1} \le 172)=P(\bruch{X_{1}-175,8}{5,84}\le\bruch{-3,8}{5,84})=PHI(\bruch{-3,8}{5,84})=0,2578.[/mm]
>
> Wie man das ausgerechnet hat, versteh ich nicht. Dass die
> Werte eingesetzt wurden sehe ich. Aber wie kommt man auf
> diese Rechnung ? Oder gibt es dazu eine allgemeine Formel ?
> Und wie genau rechnet man dieses PHI am Ende aus ?

Grundlagen, Grundlagen, Grundlagen!
[mm] $\Phi$ [/mm] bezeichnet die []Verteilungsfunktion der Standardnormalverteilung
Damit wir diese verwenden können, müssen wir normalisieren / standardisieren, das bedeutet:
Ist [mm] X_1 [/mm] normalverteilt zu den Parametern [mm] \mu [/mm] und [mm] \delta_1^2 [/mm] so ist [mm] $\frac{X_1 - \mu}{\delta_1}$ [/mm] standardnormalverteilt.
Mach dir das klar!

Also wurde hier so umgeformt, dass [mm] X_1 [/mm] standardisiert ist.

Gruß,
Gono.

Bezug
View: [ threaded ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ all forums  | ^ Tree of Forums  | materials


^ Seitenanfang ^
www.vorhilfe.de