www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Normalverteilung
Normalverteilung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:07 Sa 04.12.2010
Autor: bjoern.g

Aufgabe
Wie groß ist die Wahrscheinlichkeit für Ausschuss, wenn die Produktion normalverteilt mit dem Qualitätsmittelpunkt [mm] \mu [/mm] = 90 und der Streuung
[mm] \sigma [/mm] = 5 ist, wenn eine Qualität von 85 oder schlechter als Ausschuss gilt.

Hi habe zu der Aufgabe eine Frage:

Für die normale Verteilungsfunktion gilt:

F(x) = P(X [mm] \le [/mm] x) =  [mm] \bruch{1}{\wurzel{2*(\pi)}*\sigma} [/mm] * [mm] \integral_{-\infty}^{x}{e^{-\bruch{(\epsilon-\mu)^2}{2*(\sigma)^2}} d\epsilon} [/mm]


So in diesem Fall wäre das nun:

F(x) = P(X [mm] \le [/mm] 85) =  [mm] \bruch{1}{\wurzel{2*(\pi)}*\sigma} [/mm] * [mm] \integral_{-\infty}^{85}{e^{-\bruch{(\epsilon-\mu)^2}{2*(\sigma)^2}} d\epsilon} [/mm]

Das soll gleich:

F(x) = P(X [mm] \le [/mm] 85) = 0,5 -  [mm] \bruch{1}{\wurzel{2*(\pi)}*\sigma} [/mm] * [mm] \integral_{85}^{90}{e^{-\bruch{(\epsilon-\mu)^2}{2*(\sigma)^2}} d\epsilon} [/mm]

sein ....

Mir ist nicht so ganz klar wie man darauf kommt. Vorallem woher werden denn die 0,5 Gezaubert? Kann mir da bitte mal jemand helfen :( :(

Der Rest wird mit dem Mathematikprogramm APL berechnet (Endgültige Lösung)
bzw. dem Romberg Verfahren.


VIELEN VIELEN DANK :-)

        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Sa 04.12.2010
Autor: Gonozal_IX

Hallo bjoern,

Ist [mm] \mu [/mm] der Erwartungswert, so gilt doch:

$P(X [mm] \le \mu) [/mm] = [mm] \bruch{1}{2}$ [/mm]

Hier ist also:

$P(X [mm] \le [/mm] 85) = P(X [mm] \le [/mm] 90) - P(85 < X [mm] \le [/mm] 90) = [mm] \bruch{1}{2} [/mm] - [mm] \ldots$ [/mm]

MFG,
Gono.

Bezug
                
Bezug
Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 Sa 04.12.2010
Autor: bjoern.g

Hi , Danke erstmal für die schnelle Antwort:


Hallo bjoern,

Ist $ [mm] \mu [/mm] $ der Erwartungswert, so gilt doch:

$ P(X [mm] \le \mu) [/mm] = [mm] \bruch{1}{2} [/mm] $ ????

Wie kommt man darauf und woher weis ich das das 1/2 ist????


DANKE!


Bezug
                        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Sa 04.12.2010
Autor: Gonozal_IX

Huhu,

  

> [mm]P(X \le \mu) = \bruch{1}{2}[/mm] ????
>  
> Wie kommt man darauf und woher weis ich das das 1/2
> ist????

hast du dir schonmal die Dichte der Normalverteilung angeschaut?
Die ist offensichtlich symmetrisch um [mm] $y=\mu$, [/mm] d.h. die eine "Hälfte" der Dichtefunktion liegt links von [mm] \mu, [/mm] die andere rechts.

MFG,
Gono.

Bezug
                                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:38 Sa 04.12.2010
Autor: bjoern.g

Greetz !

Danke jetzt hab ichs kapiert


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de